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A b s t r a c t  

Byzantine Agreement has become increasingly im- 

portant in establishing distributed properties 

when there may exist errors in the systems. 

Recent polynomial algorithms for reaching 

Byzantine Agreement provide us with feasible sol- 

utions for obtaining coordination and synchroni- 

zation in distributed systems. In this paper we 

study the amount of information exchange neces- 

sary to ensure Byzantine Agreement. This is meas- 

ured by the number of messages and the number of 

signatures appended to messages (in case of 

authenticated algorithms) the participating 

processors need to send, in the worse case, in 

order to reach Byzantine Agreement. The lower 

bound for the number of signatures in the 

authenticated case is ~(nt), where n is the num- 

ber of participating processors and t is the up- 

per bound on the number of faults. If n is large 

compared to t, it matches the upper bounds from 

previously known algorithms. The lower bound for 

the number of messages is ~(n+t2). We present an 

algorithm that achieves this bound and for which 

the number of phases does not exceed the minimum 

t+l by more than a constant factor. 

1. INTRODUCTION 

Reaching agreement in distributed system is es- 

sential for maintaining coordination and synchro- 

nization among the participating processors. For 

establishing the agreement, information has to be 
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exchanged. In this paper we present lower bounds 

on the amount of information exchange to ensure 

that agreement is reached. 

The type of agreement we study is called 

Byzantine Agreement (LSP) and it is achieved 

when: 

(I) all correctly operating processes agree 

on the same value, and 

(II) if the transmitter operates correctly, 

then all correctly operating processes 

agree on its value. 

Several algorithms for obtaining Byzantine Agree- 

ment have been published (PSL), (LSP), (L), (Da), 

(Db), (DSa), (DSb), (FFL), (DFFLS). Without using 

authentication the best algorithm is the one pre- 

sented in (DFFLS), in which the agreement is 

achieved within 2t+3 phases while exchanging, 

in the worst case, O(nt + t31og t) bits of 

information. The best solution using 

authentication is presented in (DSb), it requires 

t+l phases and O(nt+t 2) messages, where each mes- 

sage may contain several signatures. The maximum 

number of signatures required is O(nt2+t 3) for 

t+l phases and O(nt+t 3) for t+2 phases. Previ- 

ous papers give lower bounds either on the ratio 

between correct and faulty processors (La) or on 

the number of phases (LF), (DSb), (DLM), and 

(DSc).  

In this paper we concentrate on algorithms using 

authentication, and analyze how many messages 
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have to be exchanged to reach Byzantine Agree- 

ment. We will prove that in the worst case any al- 

gorithm must exchange ~(n+t 2) messages and ~(nt) 

signatures. The lower bound for the number of 

messages in the authenticated case differs from 

the known upper bound. To close this gap we pre- 

sent an algorithm which within 0(t) phases sends 

only 0(n+t 2) messages. For n much larger than t 

there is an even simpler and better solution with 

t+2+t/~ phases and 0(a n) messages for IS~t. The 

solution presents a tradeoff between the number 

of messages and phases. 

Concentrating on algorithms that use 

authentication does not mean sacrificing practi- 

cality, since in a real distributed system one 

can assume that no processor sends wrong informa- 

tion on purpose, and in these cases a simple er- 

ror correction code instead of signatures can be 

used and the results are applicable. 

The lower bound on the number of signatures im- 

plies a lower bound on the number of messages in 

the unauthenticated case. This lower bound shows 

that when nZt 2 the algorithm in (DFFLS) is best 

possible to within a constant factor in this re- 

spect. 

2. HISTORIES 

We first review some notions from (DSa). 

A phase is a directed graph with nodes corre- 

sponding to processors and with labels on the 

edges. A label represents the information sent 

from a given processor to another during the giv- 

en phase. We assume that when no message is sent 

there is no edge. An n processor histor[y_ is a fi- 

nite sequence of n node phases, with nodes la- 

belled by the names of the processors, together 

with a special initial phase called p__hase 2, such 

that phase 0 contains only a single inedge to one 

processor called the sender. (The assumption is 

that the inedge at phase 0 carries the value that 

the sender is to send.) 

A subhistory of a history H is a copy of H with 

some edges removed. For each history H and 

processor p there is a unique subhistory pH 

called the s ubhistory of H according to B, con- 

sisting of only the edges with target p. Thus, 

the subhistory according to the sender inc]udes 

the value it is supposed to send even if it sends 

nothing. Note that the subhistory pH is all that 

processor p has to work with, it cannot have any 

other information about the states of other 

processors. 

An agreement algorithm on a class of histories C 

consists of a correctness rule R (a function 

which given a subhistory according to p and an 

edge in a phase to be added to the history as the 

next phase, produces a possibly empty label for 

that edge) and a decision function F (a function 

from subhistories according to processors of his- 

tories in C to the union of V with a special sym- 

bol representing "sender fault"). With respect to 

a given correctness rule, a processor p is said 

to be correct at phase k if each edge from p in 

phase k has the label produced by the correctness 

rule operating on the previous k-i phases of the 

subhistory according to p. A processor p is cor- 

rect for history H if it is correct at each phase 

of H. We call a history t-faulty (with respect to 

a correctness rule) if at most t of its process- 

ors are incorrect. 

A correctness rule is actually a union of possi- 

bly distinct correctness rules, one for each 

processor. Likewise, the decision function is a 

union of individual decision functions. 

We say Byzantine Agreement can be achieved for n 

processors with at mo___sst t faults within d phases 

if there is an agreement algorithm for the set C 

of n processor, t-faulty, d phase histories so 

that the decision function F obeys the rules for 

Byzantine Agreement: 

(I) if processors p and q are correct for H in C 

then FpH = FqH, and 

(II) if the sender is correct at the first phase 

of H and processor p is correct for H in C 

then FpH = v where v is the sender's value. 
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Note that the class C of histories is assumed 

limited to those consistent with the semantics of 

authentication. 

3. A LOWER BOUND ON THE NUMBER OF SIG- 

NATURES IN THE AUTHENTICATED CASE 

We consider the worst case behavior in which a 

faulty processor can invent any unauthenticated 

information. But we assume that the processors 

share a signature scheme that enables each one to 

sign its messages so that every receiver will re- 

cognize them as being signed by it and no one can 

alter the content of the message or the signature 

undetectably. Such a scheme is the one suggested 

in (DH) and (RSA), and the use of it for Byzantine 

algorithms is described in (DSa), (DSb), (LPS), 

and (PLS). 

We allow faulty processors to collude for cheat- 

ing, therefore we can assume that every message 

that contains only signatures of faulty process- 

ors can be produced by these processors. This is 

a worst case assumption, and it will be assume in 

the lower bound proofs. The assumption will be 

extended to assume that every subhistory in which 

only faulty processors are involved, can be 

produced by every faulty processor at any time. 

There exists an algorithm to reach Byzantine 

Agreement without using signatures; therefore, 

the lower bound is meaningless unless we count 

somehow the messages that do not contain signa- 

tures. We make the technical assumption that ev- 

ery message in the authenticated algorithm 

carries at least the signature of its sender. 

Alternatively, the lower bound can count the num- 

ber of signatures together with the number of 

messages without signatures. 

Theorem I: l_ff Byzantine Agreement is achieved 

b_~ an agreemen t algorithm that handles u_~ to t 

(t<n-l) faults, b j[ using authentication, then 

there exists a history H in which the total num- 

ber of signatures being sent b_~ correct process- 

ors is at least n(t+l)~. 

Proof: Let H be the history in which all 

processors are correct and the transmitter sends 

the value 0, and G the one in which all are cor- 

rect and the transmitter is sending i. If the sum 

of the number of signatures each correct process- 

or receives and the number of processors receiv- 

ing its signature in both histories together is 

at least t+l, then the theorem holds. 

Denote by A(p) the set of all processors that ei- 

ther receive the signature of p or p receives 

their signatures in at least one of the two his- 

tories. Assume that there exists a processor p 

for which the cardinality of A(p) is at most t. 

Let H' be the history in which the processors in 

A(p) behave towards p as in H and towards all 

the rest of the processors as in G. The process- 

ors in A(p), as faulty processors, are able to do 

so, because all the messages to correct process- 

ors, other than p, do not contain p's signature 

and all the messages to p contain only signatures 

of processors in A(p). Therefore, in H' process- 

or p sees the same subhistory as in H, which 

implies that FpH'=FpH=0, while all other correct 

processors q see the subhistory they saw in G 

and hence FqH'=FqG=I. Notice that there are other 

correct processors since we assumed t<n-l. This 

violates condition (I) of Byzantine Agreement. 

Therefore, there cannot be any processor which 

"exchanges" in H and G altogether at most t sig- 

natures with other processors. D 

If authentication is not available this lower 

bound applies directly to the number of messages 

that have to be sent. 
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Corollary ]: If Byzantine A Kreement is achieved 

b~ an a~reement algorithm that handles u~ to t 

(t<n-l) faults, without usin~ authentication, 

then there exists a history H in which the total 

number of messagesl being sent b~ correct process- 

ors is at least n(t+l)/4. 

Theorem 2: If Byzantine Agreement is achieved 

b~ an agreemen t algorithm that handles u~ to t 

(t<n-l) faults then there exists a histor[ H in 

which the correct processors send at least 

ma_xx{(n-_!l)/2,(l+t/2) 2} messages. 

Proof: The basic assumption for algorithms that 

reach Byzantine Agreement without using 

authentication is that a processor can identify 

only the immediate source of every message it re- 

ceives. Any processor p can claim to have re- 

ceived a certain message from another processor 

q, and there is no way for a processor z differ- 

ent from p and q to decide whether this is true or 

not (except in the special case where z has al- 

ready detected t faulty processors and p is not 

among them). This is equivalent to the assumption 

that every message carries exactly one signature, 

the signature of the sender of that message. 

Therefore, we can conclude from Theorem 1 that at 

least n(t+l)/4 messages are necessary in any al- 

gorithm that does not use authentication. [] 

4. A LOWER BOUND ON THE NUMBER OF MES- 

SAGES IN THE AUTHENTICATED CASE 

Sometimes the overhead for sending a message 

costs more than the message itself; and there- 

fore, it makes sense to find algorithms which 

minimize the number of messages. Since a message 

that has several different signatures appended 

can contain a lot more verifiable information 

than the same message without these signatures, 

we do not necessarily need the same number of 

messages as in the unauthenticated case. 

As we have proved in the previous section, if we 

use fewer than ~(nt) messages, some must carry 

several signatures. In this section we show that 

in certain histories at least ~(n+t 2) messages 

have to be sent to ensure that agreement has been 

reached. 

Proof: As in the previous proof let H be the 

history in which all processors are correct and 

the transmitter sends the value 0, and G the one 

in which all are correct and the transmitter 

sends I. One of the values 0 and i, let us say 0, 

must have the property that there exists a set Q 

of at least (n-l)/2 processors p different from 

the transmitter such that each p does not agree 

on 0 if it receives no messages at all. This im- 

plies that in H correct processors must have sent 

a least (n-l)/2 messages. 

Now assume that the maximum is achieved by the 

second term. Let B be a subset of Q of size l+t/2 

and let A be the remaining processors. We cannot 

prove that every processor has to send or receive 

a certain number of messages increasing with t 

since efficient authenticated algorithms tend not 

to be homogeneous. But by playing with histories 

we will show that there exists a history H ~ in 

which each processor in B is faulty and can force 

the correct processors in A to send at least 

l+t/2 messages to it. 

Let H' be the following history: 

Every processor in A is correct, the transmit- 

ter sends the value 0 . Each processor q in B 

never sends a message to other processors in B. 

Towards processors in A processor q behaves 

like a correct processor with one exception, it 

ignores the first t/2 messages received from 

processors in A, all of them if it gets fewer 

than t/2. This defines a valid history with 

l+t/2 faults in which the correct processors in 

A have to agree on value 0 , because the trans- 

mitter is correct and has sent this value. 

Assume that there is a faulty processor p in B 

that gets at most t/2 messages from processors 

in A . Let A(p) be the set of processors of A 
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that have sent messages to p in H. To obtain the 

contradiction we change H' into history H" : 

make p correct, and all the processors in A(p) 

incorrect. They behave like correct processors 

except for not sending any message to p. Process- 

ors in B different from p ignore any message 

they get from p . 

By definition, the faulty processors in B-{p} 

and A(p) behave towards the correct processors 

in A in history H" in exactly the same way as 

they do in H'. Since p in H' simulates the be- 

havior of a correct processor that has not got 

the first t/2 messages it was supposed to get 

there is also no difference between the behavior 

of p towards processors in A in H' and H". 

Therefore, each correct processor other than p 

sees the same subhistory in both cases and at the 

end he must agree on value 0 . But the correct 

processor p receives in H" no messages at all, 

therefore by definition he doesn't agree on 0 . 

This leads to a contradiction, which proves that 

in H' every processor in B must receive at least 

l+t/2 messages from correct processors. [] 

5. D E C R E A S I N G  T H E  N U M B E R  OF MESSAGES IN 

THE AUTHENTICATED CASE 

None of the known authenticated algorithms makes 

use of authentication to substantially reduce the 

number of messages required to be sent in the 

case where n is much larger than t. In this case 

the best known algorithms, with and without 

authentication, require 8(nt) messages 

(DSb,DFFLS) in the worst case. However for large 

n Theorem 2 only gives a linear lower bound, and 

the ~(nt) lower bound in Theorem i only holds 

for the total number of signatures that have to 

accompany messages. Since we can append a lot of 

signatures to a message there may exist an 

authenticated algorithm that after reaching the 

agreement among some set of active processors, 

sends only a linear number of messages to inform 

the rest about the agreement. 

In this section we present such an algorithm. The 

number of phases this algorithm needs does not 

exceed the minimal number t+l by more than a 

small constant factor. Of course in the worst 

case many messages have to carry ~(t) 

signatures. 

We may assume that n is at least 2t+l , other- 

wise the algorithm in (DSb) sends a number of 

messages that is of the same order as the lower 

bound in Theorem 2. First we consider the case 

n=2t+l and desclibe two algorithms. The first, 

working in t+2 phases, sends fewer messages 

than the previously known algorithms. The second 

uses more phases, but has the nice feature that 

at the end not only does every correct processor 

agree on the same value, but it also has a 

one-message proof for the outside world of what 

this value is. In practice this means that it 

possesses a string which says what the common 

value is and this statement is signed by at least 

t other processors. 

In the following algorithms we assume that the 

processors have to decide whether the transmitter 

has sent value 0 or 1 . If the transmitter can 

send more than two values one has to modify the 

algorithms slightly. We also assume that whenever 

a processor sends a message to someone else, it 

appends its signature to it before sending. 

Throughout this section we assume that all 

processors are completely synchronized. 

For the first algorithm let q be the transmitter 

and partition the 2t remaining processors into 

two sets A and B , each of size t. Let G be 

that graph which is formed by the complete 

bipartite graph with the set of nodes A,B. In ad- 

dition connect node q to each node in A or B. 

We call a message a processor p receives at phase 

k, for k=l,...,t+2 correct if it consists of a 

value with signatures appended to it and the se- 

quence of processors that signed that message to- 

gether with p form a simple path of length k 

from q to p in G. 
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Algorithm i: 

Phase I: 

The transmitter sends its value to ev- 

ery other processor. 

Phases 2 to t+2: 

Whenever a processor in A (B) gets a 

correct message containing for the 

first time the value I it sends this 

message to everybody in B (A). 

Decision function: 

A processor in A or B decides that 

the value is i if by phase t+2 it 

has got a correct message with value 

i, otherwise it agrees on value 0 . 

Theorem 3: For n=2t+l Algorithm 1 is a t+2 

-phase authenticated algorithm to reach Byzantine 

Agreement among n processors with at most t 

faults that does not require sending more than 
/ 

2t2+2t messages, o 

The second algorithm is an extension of the first 

one. It has 2t+l additional phases. Let the 

processors be pl,...,P2t+ I, We call a message 

which is received by some processor pj after 

phase t+2 increasing if it consists of the value 

to which pj has committed in phase t+2 

together with signatures of processors with la- 

bels less than j in increasing order. 

Algorithm 2: 

Phase 1 to t+2: 

Run algorithm 1 and decide on the 

common value. 

For INjN2t+I phase t+2+j : 

Let m. be one of the increasing messages p= 
J J 

has received so far with a maximum number of 

signatures appended to it. If it has not re- 

ceived any message, then m . is only its 
3 

value. If m. carries at least t 
J 

signatures Pi sends this message to every 

other processor, else only to processors 

with a label between j+l and j+t+l. 

Theorem 4: For n=2t+l Algorithm 2 is an 

authenticated algorith m that reaches Byzantine 

Agreement among n processors with at most t 

faults such that after 3t+3 phases each correct 

processor has received the common value together 

with at least t signatures of other processors 

appended to it. The algorithm requires sendin~ art 

most 5t2+St message. [] 

We will now consider the general case n>2t+l . 

Arbitrarily choose a set A of 2t+l processors 

that includes the transmitter to be the set of 

active processors and let B be the m:=n-(2t-l) 

remaining processors, called passive. The algo- 

rithm we will describe consists of two parts: in 

the first the active processors agree on a value, 

using one of the previous algorithms, and then in 

the second they use the following algorithm to 

share the agreement with the passive processors. 

Divide the passive processors into r disjoint 

subsets with s processors each - except possibly 

the last one - where r=rm/sT. The algorithm is 

parameterized by the size s of each subset. Fix s 

to be 2k-iNt for some natural number k; thus, the 

size of each subset is bounded by the upper bound 

on the number of faults. Arrange all the process- 

ors in each subset of B into a binary tree of 

depth k. We assume that this construction is 

known to each of the n processors. 

We will now describe how the processors in B can 

be informed about a value v on which the active 

processors in A have agreed upon using the pre- 

vious algorithm. A message is called valid if it 

consists of a possible value the transmitter 

might have sent with at least t+l signatures of 

active processors appended to it. Thus, no 

processor can ever send a valid message contain- 

ing a value different from the value agreed upon. 

To make the analysis easier the actions of the 

algorithm will be grouped together in certain 

blocks. Each action can take place only at a cer- 

tain phase in a certain block of phases. This ri- 

gidity which means that the algorithm cannot 

terminate earlier is not essential. It can be re- 
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laxed such that in most cases only a few addi- 

tional phases are necessary. 

Phase 2~(x): q sends m(~(x)) to every processor 

in A . 

Algorithm 3: 

For each pgA define B(p,k)=B and C(p,k) as the 

set consisting of the r binary trees defined 

above. 

For x=k,...,0 do 

(start of the phases in block x) 

~(x) := 2x-i denotes the number of 

processors in a binary tree of depth x. 

Phase I: Each pEA sends a valid message to 

the root of each binary tree C of 

depth x in C(p,x). 

If a processor q c B that is a root 

of a binary tree C of depth x has 

just received a valid message from 

at least t+l processors in A it 

defines this message to be message 

m(1) and becomes active for the 

next 2~(x)-i phases. Let 

ql,...,q~(x)_l be an arbitrary or- 

dering of the processors in the sub- 

tree, excluding the root q itself. 

For each active root q and for every iEy~-~(x)-l: 

Phase 2y: q sends m(y) to qy. 

Phase 2y+l: If at phase 2y a processor qy~C has 

just received a valid message from 

q, where q is its unique ancestor at 

height x, with some or no signatures 

of processors in C appended to it, 

it signs this message and returns it 

to q . 

If q receives m(y) back from qy 

with the signature of qy appended 

to it, it defines this message to be 

m(y+l), else m(y+l):=m(y) . 

Each processor pEA defines the set 

B(p,x-l) to be the set of all the 

processors in B(p,x) whose signa- 

ture did not appear in any valid 

message p got back from roots of 

subtrees of depth x. The set 

B(p,x-l) does not include those 

roots themselves. 

C(p,x-l) consists of all binary 

subtrees with roots in B(p,x-l). 

end (end of block x) 

end of Algorithm 3 

Correctness: Any valid message must contain the 

value the processors in A have agreed upon using 

Algorithm 2. To prove the correctness of Algo- 

rithm 3 all we have to do is to make sure that 

each processor in B gets a valid message at 

least once. This follows easily from the follow- 

ing: 

Claim i: If a processor q in B has not got a 

valid message by the end of block x (x=k,...,l), 

then for all correct processors p g A processor 

q is still in B(p,x-l). 

Observe that Claim I holds regardless how many 

processors in B are faulty: it may be more than 

t . In this ease as we will see only the number 

of messages will increase. 

In the last block each subtree is the processor 

itself; therefore, all processors in B that 

have not seen a valid message yet will get it di- 

rectly from the correct processors in A at that 

phase. 

Number of phases: Since block x consists of 

2(2x-i) phases for x>0 and I for x=O the 

total number of phases of Algorithm 3 equals 

4s-l-21og(s+l). 
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Number of messages: 

Claim 2: Let C be one of the binary trees (of 

size s and depth k). If C contains b(C) faulty 

processors, then the sum of the sizes of all the 

subtrees of C with a faulty processor as root is 

bounded by slog(b(C)+l). 

Observe that during the algorithm a correct 

processor in C receives at most one value from a 

correct root. Therefore, the total number of mes- 

sages sent by correct processors within C is 

bounded by 2(slog(b(C)+l) + s). 

directly informs each processor q in B whose 

signature appended to the correct value p has 

not been received from the corresponding root for 

q . The number of messages of this type is bounded 

by (2t+l)t(s-l) = o(n) , since there are at most 

t cycles each missing at most s-i signatures. 

Now the processors in B use the following deci- 

sion function: 

If in the last phase a processor q receives a 

value v from at least t+l processors in A , 

it agrees on v , otherwise it agrees on the 

first value it has received from its root. 

Claim 3: The number of subtrees in C the roots of 

which receive a valid value from at least one 

processor in A is bounded by 2b(C)+l. 

Therefore, the total number of messages involving 

correct processors of a given binary tree is 

bounded by 

(2t+l)(2b(C)+l) + 2(slog(b(C)+l) + s). 

To estimate the total number of messages we have 

to sum over the r=Fm/s] binary trees. Recall that 

the total number of faulty processors is bounded 

by t, which implies that the summation of 

log(b(C)+l) over all the binary trees is also 

bounded by t. Hence the total number of messages 

sent by correct processors in Algorithm 3 is 

bounded by 

2t(2t+l) +(2t+l)r + 2st + 2sr 

6t 2 + (2t+l)m/s + 2m + 0(t). 

It can easily be seen that each correct processor 

in B agrees on the same value as the correct 

processors in A . Algorithms 1 and 3 give a 

total of t+2s+3 phases and 2n+(2t+l)n/s+o(n) 

messages. Thus we have 

Theorem 5: Fo__gr a~ lNsSt<n there is an 

authenticated algorithm to reach Byzantine Agree- 

ment among n processors with at most t faults 

in at most (3t+4s) phases sending no more than 

2n+(2t+l)n/s+llt2+o(n) messages. 

If t3=o(n) the number of phases can be reduced 

to t+2s+3. D 

The above theorem presents a tradeoff between 

phases and messages, by fixing s to be t one mini- 

mizes the number of messages, which then becomes 

4n+llt~+o(n). 

Combining Algorithms 2 and 3 we get a k-phase 

Byzantine Algorithm, where k~3t+4s, that sends at 

most 2n + (2t+l)m/s + llt 2 + 0(t) messages. 

If t3=o(n) Algorithm i instead of 2 can be 

used and Algorithm 3 can be simplified. In this 

modified version a processor considers a message 

valid even if it carries fewer than t+l signa- 

tures. A root of a tree of size s forwards a value 

if it receives it from at least t+l processors 

in A. Other processors only sign the first valid 

message they get from their root. All we have to 

do is to run the phases of block k and one addi- 

tional phase, in which each processor p in A 

6. REFERENCES 

[DH] W. Diffie and M. Hellman, "New direction 

in cryptography", IEEE Trans. on Inform. 

IT-22,6(1976), 644-654. 

[DLM] R. A. DeMillo, N. A. Lynch, and M. 

Merritt, "Cryptographic Protocols", 

proceedings, the 14th ACM SIGACT Sympo- 

sium on Theory of Computing, May, 1982. 

139 



[Dal 

[Db] 

[DFFLS] 

[DSa] 

[DSb] 

[DSc] 

[DSd] 

D. Dolev, "The Byzantine Generals Strike 

Again", Journal of Algorithms, vol. 3, 

no. i, 1982. 

D. Dolev, "Unanimity in an Unknown and 

Unreliable Environment", 22nd Annual 

Symposium on Foundations of Computer 

Science, pp. 159-168, 1981. 

D. Dolev, M. Fischer, R. Fowler, N. 

Lynch, and R. Strong, "Efficient 

Byzantine Agreement Without 

Authentication", IBM Research Report 

RJ3428 (1982). 

D. Dolev and H. R. Strong, "Polynomial 

algorithms for multiple processor 

agreement", proceedings, the 14th ACM 

SIGACT Symposium on Theory of Computing, 

May 1982. 

D. Dolev and H. R. Strong, "Authenticated 

Algorithms for Byzantine Agreement", 

IBM Research Report RJ3416 (1982). 

D. Dolev and H. R. Strong, "Distributed 

Commit with Bounded Waiting", Pro- 

ceedings, Second Symposium on Reliabil- 

ity in Distributed Software and Database 

Systems, Pittsburgh, July 1982. 

D. Dolev and H. R. Strong, "Requirements 

for Agreement in a Distributed System", 

Proceedings, the Second International 

Symposium on Distributed Data Bases, 

Berlin, Sep. 1982. 

[FFL] 

[FL] 

[La] 

[LSP] 

[LF] 

[PSL] 

[RSA] 

M. Fischer, R. Fowler, and N. Lynch, "A 

Simple and Efficient Byzantine Generals 

Algorithm", Proceedings, Second Sympo- 

sium on Reliability in Distributed Soft- 

ware and Database Systems, Pittsburgh, 

July 1982. 

M. Fischer, and L. Lamport, private com- 

munication of paper in preparation, 

April, 1982. 

L. Lamport, "The Weak Byzantine Generals 

Problem", JACM, to appear. 

L. Lamport, R. Shostak, and M. Pease, 

"The Byzantine Generals Problem", ACM 

Trans. on Programing Languages and Sys- 

tems, to appear. 

N. Lynch, and M. Fischer, "A Lower Bound 

for the Time to Assure Interactive Con- 

sistency", Information Processing Let- 

ters, to appear. 

M. Pease, R. Shostak, and L. Lamport, 

"Reaching Agreement in the Presence of 

Faults", JACM, vol. 27, no. 2, pp. 

228-234, 1980. 

R. L. Rivest, A. Shamir, and L. Adleman, 

"A method for obtaining digital signa- 

tures and public-key cryptosystems", 

Comm. ACM 21(1978), 120-126. 

140 


