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Abstract. Many important cellular response mechanisms are activated
when a peptide binds to an appropriate receptor. In the immune system,
the recognition of pathogen peptides begins when they bind to cell mem-
brane Major Histocompatibility Complexes (MHCs). MHC proteins then
carry these peptides to the cell surface in order to allow the activation
of cytotoxic T-cells. The MHC binding cleft is highly polymorphic and
therefore protein-peptide binding is highly specific. Developing compu-
tational methods for predicting protein-peptide binding is important for
vaccine design and treatment of diseases like cancer.
Previous learning approaches address the binding prediction problem
using traditional margin based binary classifiers. In this paper we propose
a novel approach for predicting binding affinity. Our approach is based on
learning a peptide-peptide distance function. Moreover, we learn a single
peptide-peptide distance function over an entire family of proteins (e.g
MHC class I). This distance function can be used to compute the affinity
of a novel peptide to any of the proteins in the given family. In order to
learn these peptide-peptide distance functions, we formalize the problem
as a semi-supervised learning problem with partial information in the
form of equivalence constraints. Specifically we propose to use DistBoost

[1, 2], which is a semi-supervised distance learning algorithm.
We compare our method to various state-of-the-art binding prediction
algorithms on MHC class I and MHC class II datasets. In almost all
cases, our method outperforms all of its competitors. One of the major
advantages of our novel approach is that it can also learn an affinity
function over proteins for which only small amounts of labeled peptides
exist. In these cases, DistBoost’s performance gain, when compared to
other computational methods, is even more pronounced.

1 Introduction

Understanding the underlying principles of protein-peptide interactions is a
problem of fundamental importance in biology, with application to medicinal
chemistry and drug design. Many cellular responses and activation mechanisms
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are triggered when a peptide binds to an appropriate receptor which leads to a
cascade of downstream events. This communication mechanism is widely used
in eukaryotic cells by cytokins, hormones and growth factors. In the immune
system, the activation of cytotoxic T-cells is mediated by the binding of for-
eign antigen peptides to cell membrane Major Histocompatibility Complexes
(MHCs). Antigen presenting MHC molecules are usually divided into two ma-
jor classes: class I and class II (see Fig. 1). The function of both class I and
class II molecules is to carry short peptides to the cell surface for presentation
to circulating T-cells. The recognition of these pathogen peptides as non-self by
T-cells elicits a cascade of immune responses. MHC binding peptides, therefore,
play an important role in diagnosis and treatment of cancer [3].

As a result of two decades of extensive experimental research, there exists
empirical evidence on peptides that bind to a specific MHC molecule and pep-
tides that do not bind to it. In some cases, binding peptides are classified as
either high-affinity, moderate-affinity or low-affinity binders. Empirical evidence
reveals that only 1 out of 100 to 200 peptides actually binds to a particular MHC
molecule [4]. Since biochemical assays, which empirically test protein-peptide
binding affinity, are not amenable to high throughput analysis, protein-peptide
computational prediction methods come into play. Many different computational
approaches have been suggested for predicting protein-peptide binding including
motif based methods [5, 6], structural methods [7] and machine learning algo-
rithms [8–10]. While all of these methods obtain promising results, the problem
seems far from being solved.

(a) (b)

Fig. 1. Schematized drawing of a pep-
tide in the binding groove of MHC class
I (a) and class II (b) molecules. The
peptide backbone is shown as a string
of balls, each of which represents a
residue.

Many machine learning prediction
methods [8–10] are implicitly based on the
observation that peptides that bind to a
specific protein are similar in some sense.
These learning algorithms formalize the
problem as a binary (margin based) clas-
sification task — binding predictions are
provided using a classifier which is trained
to separate the binding and non-binding
peptides for each protein independently.

In this paper we propose a novel
approach for predicting protein-peptide
binding affinity. Our approach is based
on learning a peptide-peptide distance (or similarity) function1. This peptide-
peptide distance function can then be used to compute a protein-peptide affinity
score. We further propose to pool together information about binding and non-
binding peptides from a number of related proteins (“protein family”, e.g MHC
class I). Our algorithm uses this data to learn a single peptide-peptide distance
function for an entire protein family. Intuitively, a “good” learnt distance func-
tion should assign relatively small values (distances) to pairs of peptides that

1 We do not require that the triangle inequality holds, and thus our distance functions
are not necessarily metrics.



bind to a specific protein. Thus, given a novel binding peptide, we would expect
its average distance to all known binders to be relatively small (as opposed to
the average distance of a novel non-binding peptide to the same known binding
peptides). We therefore propose the following learning scheme:

1. Compile a dataset of binding and non binding peptides from an entire protein
family (e.g MHC class I or MHC class II).

2. Use the DistBoost algorithm [1, 2] to learn a single peptide-peptide distance
function over this dataset using the information provided about binding and
non-binding peptides.

3. Use this learnt distance function to compute the affinity of novel peptides to
any of the proteins in the protein family.

We compare our method to various protein-peptide affinity prediction meth-
ods on several datasets of proteins from MHC class I and MHC class II. The re-
sults show that our method significantly outperforms all other methods. We also
show that on proteins for which small amounts of binding peptides are available
our improvement in performance is even more pronounced. This demonstrates
one of the important advantages of learning a single peptide distance function
on an entire protein family.

2 Related work

Many different computational approaches have been suggested for the protein-
peptide binding prediction problem (see [11] for a recent review). These methods
can be roughly divided into three categories:

Motif based methods: Binding motifs represent important requirements
needed for binding, such as the presence and proper spacing of certain amino
acids within the peptide sequence. Prediction of protein-peptide binding is usu-
ally performed as motif searches [5]. The position specific scoring matrix (PSSM)
approach is a statistical extension of the motif search methods, where a matrix
represents the frequency of every amino acid in every position along the peptide.
Peptide candidates can be assigned scores by summing up the position specific
weights. The RANKPEP resource [6] uses this approach to predict peptide bind-
ing to MHC class I and class II molecules.

Structure based methods: These methods predict binding affinity by eval-
uating the binding energy of the protein-peptide complex [7]. Note that these
methods can be applied only when the three-dimensional structure of the protein-
peptide complex is known or when reliable molecular models can be obtained.

Machine learning methods: Most of the methods in this category formal-
ize the problem of predicting protein-peptide binding as a binary classification
problem — for each specific protein, a classifier is trained to separate bind-
ing and non-binding peptides. Many different algorithms have been proposed.
Among these are artificial neural networks (NetMHC) [10], hidden Markov mod-
els (HMM’s) [8] and support vector machines (SVMHC) [9]. These methods re-
quire sufficient amounts of training data (i.e peptides which are known to be
binders or non-binders) for each of the proteins.



Peptides

P
ep

tid
es

A2

A−6802

B−2705

B−3501

B−5301

H−2Db
H−2Kb

H−Ld

Proteins
A2 A−6802 B−2705 B−3501 B−5301 H−2Db H−2Kb H−Ld

Peptides

P
ep

tid
es

A2

A−6802

B−2705

B−3501

B−5301

H−2Db
H−2Kb

H−Ld

Proteins
A2 A−6802 B−2705 B−3501 B−5301 H−2Db H−2Kb H−Ld

Fig. 2. Left: peptide-peptide distance matrices on MHC class I binding peptides, col-
lected from the MHCBN dataset. Peptides that bind to each of the proteins were
grouped together and labeled accordingly. A “good” distance matrix should therefore
be block diagonal. Top left: The Euclidean peptide-peptide distance matrix in R

45

(see Section 5 for details). Bottom left: The peptide-peptide distance matrix computed
using the DistBoost algorithm. Right: protein-peptide affinity matrices. The affinity
between a peptide and a specific protein is computed by measuring the average distance
of the peptide to all peptides known to bind to that protein (see eq. 1). Top right: the
Euclidean affinity matrix. Bottom right: the DistBoost affinity matrix. DistBoost was
trained on binding peptides from all of the molecules simultaneously.

3 From peptide distance functions to binding prediction

As mentioned above, we propose to address the protein-peptide binding affinity
prediction problem by learning a peptide-peptide distance function. Intuitively,
we would expect that peptides that bind to a specific protein would be “similar”
(or close) to each other, and “different” (far) from peptides that do not bind
to this protein. Following this intuition, our goal is to learn a distance function,
which assigns relatively small distances to pairs of peptides that bind to a specific
protein and relatively large distances to pairs, consisting of a binder and a non
binder (see Fig. 2). We can then predict the binding affinity of a novel peptide
to a specific protein, by measuring its average distance to all of the peptides
which are known to bind to that protein (see Fig. 2). More formally, we define
the affinity between peptide i and protein j to be:

Affinity(Peptidei, P roteinj) ≡ e

“

−
1

|Bindingj |

P

k∈Bindingj
D(Peptidei,Peptidek)

”

(1)

where D(Peptidei, P eptidek) is the distance between Peptidei and Peptidek and
Bindingj = {k|Peptidek is known to bind to Proteinj}.



For each protein, our training data consists of a list of binding peptides
(and, possibly, their binding affinities) and a list of non-binding peptides. This
form of partial information can be formally defined as equivalence constraints.
Equivalence constraints are relations between pairs of data points, which indicate
whether the points in the pair belong to the same category or not. We term a
constraint positive when the points are known to be from the same class, and
negative in the opposite case. In our setting, each protein defines a class. Each
pair of peptides (data points) which are known to bind to a specific protein
(that is, belong to the same class) defines a positive constraint, while each pair
of peptides in which one binds to the protein and the other does not — defines
a negative constraint.

In this work we propose to use the DistBoost algorithm for learning peptide-
peptide distance functions. Moreover, we propose to learn a single peptide dis-
tance function using partial information about binding and non binding pep-
tides on several proteins from the same “protein family”. When the different
classes share common characteristics, learning a single distance function for all
classes might benefit from a larger and more diverse training set. Our suggested
approach has, therefore, the following potential advantages over the above men-
tioned computational approaches: (1) it can be used on proteins for which only
a small amount of training data is available, (2) it can also be used to predict
peptide binding affinity to novel proteins and (3) it can compute the relative
binding affinities of a peptide to several proteins from the same protein family.

It should be emphasized that one cannot employ standard multi-class learn-
ing techniques in this scenario, since peptides do not have a well defined label.
The partial information we have access to cannot be regarded as labeled data
for three reasons: (1) if a peptide does not bind to a specific protein, it will not
necessarily bind to a different protein from the same protein family, (2) peptides
that bind to a specific protein can also bind to other proteins in its family and
(3) most peptide pairs are unlabeled, that is we do not know whether they both
bind to some specific protein, or not.

4 The DistBoost Algorithm

Let us denote by {xi}
n
i=1 the set of input data points which belong to some vector

space X . The space of all pairs of points in X is called the “product space” and is
denoted by X ×X . An equivalence constraint is denoted by (xi1 , xi2 , yi), where
yi = 1 if points (xi1 , xi2 ) belong to the same class (positive constraint) and
yi = −1 if these points belong to different classes (negative constraint). The
DistBoost algorithm is a semi-supervised algorithm that uses unlabeled data
points in X and equivalence constraints to learn a bounded distance function,
D : X × X → [0, 1], that maps each pair of points to a real number in [0, 1].

The algorithm makes use of the observation that equivalence constraints
on points in X are binary labels in the product space, X × X . By posing the
problem in product space we obtain a classical binary classification problem:
an optimal classifier should assign +1 to all pairs of points that come from



Algorithm 1 The DistBoost Algorithm

Input:

Data points: (x1, ..., xn), xk ∈ X
A set of equivalence constraints: (xi1 , xi2 , yi), where yi ∈ {−1, 1}
Unlabeled pairs of points: (xi1 , xi2 , yi = ∗), implicitly defined by all uncon-

strained pairs of points

– Initialize W 1
i1i2

= 1/(n2) i1, i2 = 1, . . . , n (weights over pairs of points)
wk = 1/n k = 1, . . . , n (weights over data points)

– For t = 1, .., T

1. Fit a constrained GMM (weak learner) on weighted data points in X using
the equivalence constraints.

2. Generate a weak hypothesis h̃t : X × X → [−1, 1] and define a weak distance

function as ht(xi, xj) = 1
2

“

1 − h̃t(xi, xj)
”

∈ [0, 1]

3. Compute rt =
P

(xi1
,xi2

,yi=±1)

W t
i1i2

yiht(xi1 , xi2), only over labeled pairs. Ac-

cept the current hypothesis only if rt > 0.
4. Choose the hypothesis weight αt = 1

2
ln( 1+rt

1−rt
)

5. Update the weights of all points in X × X as follows:

W t+1
i1i2

=



W t
i1i2

exp(−αtyih̃t(xi1 , xi2)) yi ∈ {−1, 1}
W t

i1i2
exp(−αt) yi = ∗

6. Normalize: W t+1
i1i2

=
W

t+1
i1i2

n
P

i1,i2=1
W

t+1
i1i2

7. Translate the weights from X × X to X : wt+1
k =

P

j
W t+1

kj

Output: A final distance function D(xi, xj) =
PT

t=1 αtht(xi, xj)

the same class, and −1 to all pairs of points that come from different classes.
This binary classification problem can be solved using traditional margin based
classification techniques. Note, however, that in many real world problems, we
are only provided with a sparse set of equivalence constraints and therefore the
margin based binary classification problem is semi-supervised.

DistBoost learns a distance function using a well known machine learning
technique, called Boosting [12]. In Boosting, a set of “weak” learners are itera-
tively trained and then linearly combined to produce a “strong” learner. Specif-
ically, DistBoost’s weak learner is based on the constrained Expectation Maxi-
mization (cEM) algorithm [13]. The cEM algorithm is used to generate a “weak”
distance function. The final (“strong”) distance function is a weighted sum of a
set of such “weak” distance functions. The algorithm is illustrated in Fig. 3, and
presented in Alg. 1.

In order to make use of unlabeled data points, DistBoost’s weak learner is
trained in the original space, X , and is then used to generate a “weak distance
function” on the product space. DistBoost uses an augmentation of the ’Ad-



aboost with confidence intervals’ algorithm [12] to incorporate unlabeled data
into the boosting process. Our semi-supervised boosting scheme computes the
weighted loss only on labeled pairs of points but updates the weights over all
pairs of points (see steps (3-6)). The weights of the unlabeled pairs decay at
least as fast as the weight of any labeled pair. The translation scheme from
product space to the original space and vice-versa is presented in steps (2,7) of
the algorithm.

Fig. 3. An illustration of the DistBoost algorithm. At each boosting round t the
weak learner is trained using weighted input points and some equivalence constraints.
In the example above, points 1, 2 and 5, 6 are negatively constrained (belong to different
classes) and points 3, 4 and 4, 7 are positively constrained (belong to the same class).
All other pairs of points (e.g 8, 9 and 1, 4) are unconstrained. The constrained EM
algorithm is used to learn a GMM (step (1)). This GMM is then used to generate a
“weak” distance function (step (2)) that assigns a value in [0, 1] to each pair of points.
The distance function is assigned a hypothesis weight (steps (3-4)) which corresponds to
its success in satisfying the current weighted constraints. The weights of the equivalence
constraints are updated (steps (5-6)) – increasing the weights of constraints that were
unsatisfied by the current weak learner. Finally, the weights on pairs are translated
to weights on data points (step (7)). In the example above, the distance between
the negatively constrained points 1, 2 is small (0.1) and therefore the weight of this
constraint will be enhanced.

DistBoost’s weak learner: DistBoost’s weak learner is based on the con-
strained Expectation Maximization (cEM) algorithm [13]. The algorithm uses
unlabeled data points and a set of equivalence constraints to find a Gaussian
Mixture Model (GMM) that complies with these constraints. A GMM is a para-
metric statistical model which is given by p(x|Θ) = ΣM

l=1πlp(x|θl), where πl

denotes the weight of each Gaussian, θl its parameters, and M denotes the
number of Gaussian sources in the GMM. Under this model, each data sample
originates independently from a weighted sum of several Gaussian sources. Esti-
mating the parameters (Θ) of a GMM is usually done using the well known EM
algorithm. The cEM algorithm introduces equivalence constraints by modifying



the ’E’ (Expectation) step of the algorithm: instead of summing over all pos-
sible assignments of data points to sources, the expectation is taken only over
assignments which comply with the given equivalence constraints.

The algorithm’s input is a set of unlabeled points X = {xi}
n
i=1, and a set

of pairwise constraints, Ω, over these points. Denote positive constraints by

{(p1
j , p

2
j)}

Np

j=1 and negative constraints by {(n1
k, n2

k)}Nn

k=1. Let H = {hi}
n
i=1 denote

the hidden assignment of each data point xi to one of the Gaussian sources
(hi ∈ {1, . . . , M}). The constrained EM algorithm assumes the following joint
distribution of the observables X and the hiddens H :

p(X, H |Θ, Ω) =
1

Z

n

Π
i=1

πhi
p(xi|θhi

)
Np

Π
j=1

δh
p1

j
h

p2
j

Nn

Π
k=1

(1 − δh
n1

k
h

n2
k

) (2)

where Z is the normalizing factor and δij is Kronecker’s delta. The algorithm
seeks to maximize the data likelihood, which is the marginal distribution of (2)
with respect to H . For a more detailed description of this weak learner see [13].

In order to use the algorithm as a weak learner in our boosting scheme,
we modified the algorithm to incorporate weights over the data samples. These
weights are provided by the boosting process in each round (see Alg. 1 step 7).

Generating a weak distance function using a GMM: The weak learners’
task is to provide a weak distance function ht(xi, xj) over the product space
X×X . Denote by pMAP (xi) the probability of the Maximum A-Posteriori (MAP)
assignment of point xi (pMAP (xi) = max

m
p(hi = m|xi, Θ)). We partition the data

into M groups using the MAP assignment of the points and define

h̃t(xi, xj) ≡

{

+pMAP (xi) · p
MAP (xj) if MAP(xi) = MAP(xj)

−pMAP (xi) · p
MAP (xj) if MAP(xi) 6= MAP(xj)

The weak distance function is given by ht(xi, xj) = 1
2

(

1 − h̃t(xi, xj)
)

∈ [0, 1]. It

is easy to see that if the MAP assignment of two points is identical their distance
will be in [0, 0.5] and if their MAP assignment is different their distance will be
in [0.5, 1].

5 Results

MHC datasets The first two datasets we compiled (MHCclass1 and MHC-
class2) were the same as those described in [6]. Sequences of peptides, that
bind to MHC class I or class II molecules, were collected from the MHCPEP
dataset [14]. Each entry in the MHCPEP dataset contains the peptide sequence,
its MHC specificity and, where available, observed activity and binding affinity.
Peptides, that are classified as low binders or contain undetermined residues (de-
noted by the letter code X), were excluded. We then grouped all 9 amino acid
long peptides (9-mers), that bind to MHC class I molecules, to a dataset, called
MHCclass1. This dataset consists of binding peptides for 25 different MHC class
I molecules.



Unlike MHC class I binding peptides, peptides binding to MHC class II
molecules display a great variability in length, although only a peptide core of
9 residues fits into the binding groove. Following [6], we first used the MEME
program [15] to align the binding peptides for each molecule, based on a single
9 residues motif. We finally filtered out redundant peptides and obtained the
MHCclass2 dataset. This dataset consists of binding peptides for 24 different
MHC class II molecules.

Since all peptides in the MHCPEP dataset are binders, we added randomly
generated peptides as non-binders to both MHCclass1 and MHCclass2 datasets
(amino acid frequencies as in the Swiss-Prot database). The number of non-
binders used in any test set was twice the number of the binding peptides.
During the train phase, the number of non-binders was the same as the number
of binders.

In order to assess the performance of the prediction algorithms on experimen-
tally determined non-binders, we compiled a third dataset, called MHCclass1BN.
This dataset consists of binding and non-binding peptides, for 8 different MHC
class I molecules, based on the MHCBN 3.1 website [16] (see Fig. 8 (b)).

Data representation DistBoost requires that the data be represented in some
continuous vector feature space. Following [17] each amino acid was encoded us-
ing a 5-dimensional property vector (and, thus, each peptide in the MHC datasets
is a point in R

45). The property vectors for each of the 20 amino acids are based
on multidimensional scaling of 237 physical-chemical properties. Venkatarajan
and Braun’s analysis [17] showed that these 5 properties correlate well with hy-
drophobicity, size, α-helix preference, number of degenerate triplet codons and
the frequency of occurrence of amino acid residues in β-strands. They also showed
that the distances between pairs of amino-acids in the 5-dimensional property
space are highly correlated with corresponding scores from similarity matrices
derived from sequence and 3D structure comparisons.

Evaluation methods In order to evaluate the algorithms’ performance, we
measured the affinity of all test peptides to each of the proteins. We present the
prediction accuracy (that is how well binders are distinguished from non-binders)
of the various algorithms as ROC (Receiver Operating Characteristic) curves.
The fraction of the area under the curve (AUC) is indicative of the distinguishing
power of the algorithm and is used as its prediction accuracy.

5.1 MHC binding prediction on the MHCPEP dataset

We compared our method to the recently enhanced RANKPEP method [6]. We
replicated the exact experimental setup described in [6]: (1) We used the exact
same MHC class I and class II datasets. (2) Training was performed using 50%
of the known binders for each of the MHC molecules. (3) The remaining binding
peptides were used as test data to evaluate the algorithm’s performance. These
binders were tested against randomly generated peptides as described above.
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Fig. 4. Comparative results of DistBoost

and RANKPEP on the H-2Kd MHC
class I molecule. The left plot presents
ROC curves of the best train score ob-
tained when training on 50% of the en-
tire data (red - using only positive con-
straints and blue - using both types of
constraints). The right plot presents av-
erage AUC scores on test data. We com-
pare the two PSSM methods used by
RANKPEP (A - PROFILEWEIGHT,
B - BLK2PSSM) to DistBoost when
trained using only positive constraints
(C) and when trained using both pos-
itive and randomly generated nega-
tive constraints (D). The averages were
taken over 10 different runs on ran-
domly selected train and test sets. N
denotes the total number of binding
peptides (of which 50% were used in the
training phase and the remaining 50%
were used in the test phase).

We trained DistBoost in two distinct
scenarios: (1) Training using only bind-
ing peptides (using only positive con-
straints). (2) Training using both binding
and (randomly generated) non-binding
peptides (using both positive and nega-
tive constraints). In both scenarios Dis-

tBoost was trained simultaneously on
all of the MHC molecules in each class.
Fig. 4 presents a comparison of DistBoost

to both of the PSSM’s used in [6] on the
H-2Kd MHC class I molecule. Compara-
tive results on the entire MHC class I and
class II datasets are presented in Figures 5
and 6. In all these comparisons, the PSSM
AUC scores are as reported in [6].

On the MHC class I molecules, our
method significantly outperforms both
PSSM’s used by RANKPEP. On 21
out of the 25 molecules DistBoost’s av-
erage AUC score, when trained using
only positive constraints, is higher than
both PSSM methods. The improvement
in performance is more pronounced on
molecules with relatively small amounts
of known binders (e.g. HLA-B27(B*2704)

- 10 binders, HLA-A2(A*0205) - 22 binders and HLA-A33(A*3301) - 23 binders).
One possible explanation of these results is that the information provided by
other proteins within the protein family is used to enhance prediction accuracy,
especially in these cases where only small amounts of known binders exist. Ad-
ditionally, it may be seen that using both positive and negative constraints on
this dataset, usually improves the algorithm’s performance. Another important
advantage of DistBoost can be seen when comparing standard deviations (std)
of the AUC scores. On 16 out of the 25 molecules the algorithm’s std is lower
then the std of both PSSM’s, implying that our method is more robust.

When tested on the MHC class II molecules, our method obtained similar im-
provements (see Fig. 6): On 18 out of the 24 molecules DistBoost’s average AUC
score when trained using only positive constraints is higher then both PSSM
methods. In general, it appears that the performance of all of the compared
methods is lower than on the MHC class I dataset. It is known that predicting
binding affinity on MHC class II is more challenging, partially due to the fact
that peptides that bind to class II molecules are extremely variable in length
and share very limited sequence similarity [18]. On this dataset, the use of both
positive and negative constraints only slightly improved DistBoost’s performance
(13 out of 24 molecules) over the use of positive constraints only.
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Fig. 5. Comparative results of DistBoost (left plot and bars C-D) and RANKPEP (bars
A-B) on 24 MHC class I molecules. Plot legends are identical to Fig 4. On 21 out of
the 25 molecules (including Fig. 4), DistBoost outperforms both PSSM methods. On
this data the use of negative constraints also improves performance.
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Fig. 6. Comparative results of DistBoost (left plot and bars C-D) and RANKPEP (bars
A-B) on 24 MHC class II molecules. Plot legends are identical to Fig 4. As may be
seen on 18 out of the 24 molecules, DistBoost outperforms both PSSM methods. On
this dataset the use of negative constraints only slightly improves performance.
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Fig. 7. (a) ROC curves on test data from the HLA-A2 supertype. DistBoost is com-
pared to various other prediction algorithms. (b) DistBoost and the Euclidean affinity
ROC curves on test data from the entire MHCclass1BN dataset. The rest of the meth-
ods are not presented since they were not trained in this multi-protein scenario. In both
cases, DistBoost was trained on 70% of the data and tested on the remaining 30%. TP
(true positives), FP (false positives), TN (true negatives), FN (false negatives). Results
are best seen in color.

5.2 MHC class I binding prediction on the MHCBN dataset

The MHCPEP dataset only contains information about peptides that bind to
various MHC molecules. In contrast, the MHCBN dataset also contains informa-
tion about non-binding peptides for some MHC class I molecules. We used this
dataset to evaluate the importance of learning using experimentally determined
non-binders (as opposed to randomly generated non binders).

The MHCBN dataset also contains information about binding and non-
binding peptides to supertypes which are collections of similar molecules. We
compared DistBoost to various other computational prediction methods on the
HLA-A2 supertype. Specifically we compared the performance of the following
methods: (1) The DistBoost algorithm. (2) The SVMHC web server [9]. (3) The
NetMHC web server [10]. (4) The RANKPEP resource [6] (5) The Euclidean
distance metric in R

45. Despite the fact that methods 2-4 are protein specific
they also provide predictions on various MHC supertypes including the HLA-A2
supertype.

We trained DistBoost on 70% of the entire MHCclass1BN data (including
binding and non-binding peptides) and compared its performance to all other
methods on the single HLA-A2 supertype. The test set, therefore, consists of
the remaining 30% of HLA-A2 data. The results are shown in Fig. 7 (a). As may
be seen DistBoost outperforms all other methods, including SVMHC, NetMHC
and RANKPEP, which were trained on this specific supertype. However, it is
important to note, that unlike DistBoost all of these methods were trained us-
ing randomly generated non-binders. The performance of all of these methods
when tested against random peptides is much better — AUC scores of 0.947
(SVMHC), 0.93 (NetMHC) and 0.928 (RANKPEP). These results seem to im-
ply that learning using random non-binders does not generalize well to exper-
imentally determined non-binders. Interestingly, when we tested DistBoost on
randomly generated non-binders we obtained an AUC score of 0.923. We can
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Fig. 8. (a) Learning curves of DistBoost trained using only positive constraints (Pos)
and using both types of constraints (Pos+Neg). Prediction accuracy based on the AUC
score, averaged over 20 different randomly selected training sets. (b) The MHCclass1BN
dataset.

therefore conclude that learning from “real” non-binders generalizes very well to
random non-binders.

Our proposed method is trained simultaneously on a number of proteins
from the same family, unlike methods (2-4). However, our final predictions are
protein specific. As the results reveal, we obtain high binding prediction accu-
racy when tested on a single protein (see Fig. 7 (a)). In order to quantify the
overall protein specific binding prediction accuracy, we present ROC curves for
DistBoost and the Euclidean affinity functions when tested on the entire MHC-
class1BN dataset (Fig. 7 (b)). The peptide-peptide distance matrices and the
protein-peptide affinity matrices of these two methods are presented in Fig. 2.
On this dataset DistBoost obtained excellent performance.

In order to evaluate the stability and learning power of DistBoost we ran it on
the MHCclass1BN dataset, while varying the percentage of training data. Fig. 8
(a), presents the algorithm’s learning curves when trained using only positive
constraints and when trained using both positive and negative constraints. As
may be expected, on average, performance improves as the amount of training
data increases. Note that DistBoost achieves almost perfect performance with
relatively small amounts of training data. Additionally, we can see that on this
dataset learning from both types of constraints dramatically improves perfor-
mance.

6 Discussion

In this paper we showed how the protein-peptide binding affinity problem can be
cast as a semi-supervised learning problem in which equivalence constraints can
be naturally obtained from empirical data. We then proposed to learn protein
peptide affinity by learning a peptide-peptide distance function. Specifically we
presented DistBoost, an algorithm that can learn distance functions using posi-
tive and negative equivalence constraints. Our experiments suggest that binding
prediction based on such learned distance functions exhibits excellent perfor-
mance. We also showed the importance of using negative constraints, which



further suggests that information about non-binding peptides should also be
published and made publicly available.
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