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Abstract.

Model-based invariants are relations between model parameters and image measurements, which are
independent of the imaging parameters. Such relations are true for all images of the model. Here we
describe an algorithm which, given L independent model-based polynomial invariants describing some
shape, will provide a linear re-parameterization of the invariants. This re-parameterization has the
properties that: (i) it includes the minimal number of terms, and (ii) the shape terms are the same
in all the model-based invariants. This final representation has 2 main applications: (1) it gives new
representations of shape in terms of hyperplanes, which are convenient for object recognition; (2) it
allows the design of new linear shape from motion algorithms. In addition, we use this representation to
identify object classes that have universal invariants.
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1. Introduction The analysis of invariants arose much interest
in computer vision and pattern recognition. As
we use the concept here, an invariant is a relation
between the image measurements and the model
(or shape) parameters. This relation does not de-
pend on variables of the imaging process, such as
the camera orientation (viewing position). There
are 2 types of invariants:

An image provides us with relations between 3 dif-
ferent kind of parameters: image measurements,
shape parameters, and imaging parameters (e.g.,
camera parameters). Here we restrict ourselves to
the domain of multiple points in multiple frames,
where the image measurements are 2D point co-

ordinates, and the shape parameters are 3D point Model-free invariant: there exist image mea-
coordinates. There has been much interest in re- surements which always identify the object,
lations involving only image measurements and so that their value is completely determined
imaging parameters (e.g., the epipolar geome- by the object regardless of the details of the
try and the essential matrix [8]). In this paper imaging process. This is usually called an in-
we are interested in the dual relations involving variant in the literature. Such invariant re-
only shape measurements and imaging parame- lations do not exist for 2D images of general

ters, which are called model-based invariants. 3D objects [1, 10]; for special classes of ob-
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jects, such as planar or symmetrical objects,
invariant relations may be found [10, 12].

Model-based invariant: a relation which in-
cludes mixed terms, representing image mea-
surements or model parameters. Model-based
invariant relations exist for many interesting
cases [16].

Typically, model-based invariants are complex
polynomial relations between the known image
measurements and the unknown shape parame-
ters. In the external calibration literature, where
the dual relations between camera parameters and
image measurements are ordinarily used, it proved
very useful to re-parameterize the original rela-
tions in a linear form; this turned the computation
of camera parameters into a linear problem. Obvi-
ously the problem is linear in some new variables,
that could be complex functions of the original
camera parameters. Examples are the epipolar
geometry with the essential matrix [8] or the fun-
damental bilinear matrix [9], the trilinear tensor
[14, 5], and the quadrilinear tensor [15, 18, 4].

In the context of model-based invariants, this
lead us to the following questions:

Given a model-based invariant, how do we
find its “optimal” (or most compact) linear
re-parameterization? in other words, how do
we rewrite it with the minimal number of
terms, that truly reflect the number of de-
grees of freedom of the system? Given L
model-based invariants, what is the simulta-
neous minimal linear decomposition of these
relations?

By simultaneous we specifically mean that the
shape terms are the same in all relations. The
reason we seek such simultaneous decomposition
of model-based invariants is that when the shape
terms are the same, all relations can be used si-
multaneously in applications such as direct shape
reconstruction.

Our attempt to answer these questions was mo-
tivated by two applications: one is object recog-
nition, the other is 3D reconstruction:

o If shape is reconstructed from images for the
sole purpose of recognition, the parametric
representation of the shape in the model-

based invariants captures all the relevant in-
formation on the shape. Our algorithm pro-
duces a set of L linear relations with a minimal
number of terms (these are the equation’s un-
knowns), say n. We would now need at least
[#] frames to compute shape. This automat-
ically gives us new linear shape reconstruction
algorithms, which are likely to be more robust
than other linear algorithms. Often the shape
(or depth) can be computed directly from the
reconstructed models, as will be shown in the
examples below.

¢ C(learly, for the initial indexing step in object
recognition, model-based invariants are most
suitable (imaging parameters may be com-
puted and used later during the verification
step). More specifically, a model-based in-
variant represents a relation between image
measurements and shape parameters that is
true in all images of the model. The database
which includes these models may be thought
of as a big multi-dimensional table, where an
object corresponds to the manifold defined by
its model-based invariant, and individual im-
ages are points on (or pointers into) these
manifolds. In such a framework indexing is
quick (but the representation is very space in-
efficient).
Our algorithm provides an automatic tool
to compute low dimensional linear represen-
tations of the model-based invariants; when
used, these representations simplify the com-
plexity of the recognition process by reduc-
ing the indexing complexity. In other words,
the representation of objects is made sim-
pler because simple manifolds - hyperplanes -
are stored; recognition is made easier because
an image provides a pointer - a point which
should lie on the hyperplane representing the
object depicted in the image.

One other application motivated our work:
model-based invariants have a special meaning
when the number of linear terms is no larger
than 2. In this case it is possible to separate the
shape dependency from the dependency on image
measurements, and get a model-free invariant - a
“true” invariant. Such invariant relations do not
normally exist [1, 10] unless the class of objects is
restricted [10, 12]. Our theory allows us to iden-
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tify the kind of class constraints that can be used
to reduce the number of linear terms, so that a
model-based invariant becomes a model-free in-
variant.

In this paper we assume that a set of L model-
based invariants, which describe the images of
some set of objects, is initially given. In Sec-
tion 3 we describe an algorithm which produces a
linear re-parameterization of the invariants, with
minimal number of terms. In Section 4 we gen-
eralize this algorithm to produces a linear re-
parameterization of the L invariants simultane-
ously, such that at the end the shape terms are
the same in all the re-parameterized model-based
invariants.

Jacobs [3, 6] studied the complexity of invari-
ants and model-based invariants in their raw form.
In [6] he showed that for 6 points in a single per-
spective image, there exists a nonlinear model-
based invariant with 5 unknowns. We obtained a
linear re-parameterization with 5 terms, thus the
linear representation is no more complex than the
nonlinear one in this example. In ECCV ’96 [19]
we reported a follow up of the basic technique de-
scribed in Section 3: we united two approaches,
the elimination discussed in [18] and the linear re-
parameterization of one relation described in Sec-
tion 3, to accomplish an automatic process that
optimizes indexing given a general vision problem.

2. Model-based invariants for n projective
points in 1 image

To demonstrate the procedures described in Sec-
tions 3,4 we will work out 2 examples in detail,
where the model is of 6 or 7 points and the pro-
jection model is perspective. We start by using
homogeneous coordinates to represent the 3D co-
ordinates of the points; thus the representation
of the i-th point is P; = [X;,Y;, Z;, W;]T € P3.
Since we are working in P2, 5 points define a ba-
sis; we select the first 5 points to be a certain
(robust) projective basis, leading to the following
representation of the 3D shape of the points:

P =
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1 Wi Wa

Similarly we use homogeneous coordinates to
represent the projected 2D coordinates of the
points; thus the representation of the i-th image
point is p; = [x;,y:, w;]T € P2. Since we are work-
ing in P2, 4 points define a basis; we select the
first 4 points to be the projective basis, leading
to the following representation of the image of the
points:

1 0 0 1
pr = [0]p=|1]|ps=|0]pa=1[1
1 1 1 1
ag ay az
ps = | bo |ps=| b1 |pr =1 b2
Co C1 C2

Given any image of the points, we can always com-
pute the 2D projective transformation which will
transform the points to the representation given
above.

In [2] we showed how to compute model-based
invariants in such cases. In this section we review
these relations for the special cases of 6 projec-
tive points and 7 projective points. Note that the
model-based invariants listed below have many
terms. Clearly these expressions are of little value
for linear reconstruction and indexing unless we
can re-parameterize them in a “simpler” way.

2.1. Model-based invariants for 6 projective
points

The model-based invariants in this case are ob-
tained from the observation that the following ma-
trix has rank 3 [2, 4], and thus its determinant
should be 0:

Co 0 —ag Co — Qg
0 Co —b() Co — b()
C1 X1 0 —aq Z1 C1 W1 — a W1

0 C1 Y1 —b1 Z1 C1 W1 — b1 W1

This gives the following constraint (see deriva-
tion in [2, 17], cf. with [11]):



78 D. Weinshall

a1 Z1Y7 + C1Y12b0 — C1X12(10 - (10611Z12 +
a0b1Z12—b1Y12bo+Coa1Z12—Cob1Z12—boa1Z12+
bob1 Z1? + a1 Xi%ap — aYiaoXy + a1YiagZy +
aYibyZy — Yiay Zicy + cparZ1 X1 — cob1 Z1Yy —
boa1 Z1 Xy — a1Y1boZy — ey X1Y1bo + X1b:1Y1bo +
aXi1Yiag + Xqiagh1 Z1 — c1 X1a0Zy + co X101 Zy —
Xi1bgb1 Z1 + 1 X1aoWi — cgar Z1 W1 + cgbi Z: W1 +
a0a1Z1W1 - a0b1Z1W1 + b1Y1b0W1 + b0a1Z1W1 -
bob1 Z1 W1 —c1Y1boWi — a1 X1aoWh —2X 101 Yiag +
2a1Y1b0X1 =0

2.2. Model-based invariants for 7 projective
points

The model-based invariants in this case are ob-
tained from the observation that the following ma-
trix has rank 3 [2, 4], and thus each of its 15 4 x 4
minors should vanish:

Co 0 —ag Co — Qo
0 Co —bo Co — bo
C1 X1 0 —ai Z1 C1 W1 — a W1

0 aYr bz Wi -b0W;
C2 X2 0 —as Zz C2 W2 — as W2
0 Yo —baZy caWo—baWo

In [2] we show that there are only 4 algebraic
independent constraints which involve all 7 pro-
jective points, one of them is the following (the
other 3 look similar):

—b1Yi1boasWa —cob1Z1caZ2 — cob1 Z1ca2Ys — ca Xa2c1Y1bg —
€2 X2bob1Z1 — cob1 Z1a2Wa — a2 X2b1Y1bo + a2 X2a0c1 X1 +
c2X2a0b121 —a2Y2b1Z1bo + c2 X2b1Y1bo + aob1 Z1a2Wa —
a2X2a0b121 + a2 X2bob1 Z1 + b1Y1a2Z2bo + coca X2b1Z1 —
cpa2X2b1Z1 + a2 Xac1Y1bg + apb1 Z1c2Zs + agb1 Z1c2Y2 +
a2Y2b1Z1a0 + a2bpb1Y1Y2 + cob1 Z1c2Wa + apara221Z2 —
ai1azc0Z1Z2+a1a2boZ1Z2 —apara2X1X2—agb1 Z1coWa +
c2Xaoc1Y1a9—c2X2a0c1 21 +a2 X2a0a1 Wi1+a2X2a1Y1a0—
c2X2a1Y1a0 — a1Y1a2Z2a0 + c2Yaboc1Y1 +bob1 Z1a2Wa —
bob1 Z1caWa—az Xsapa1Z1+a1 X1a0a2Z2+ca2X2a0c1 W1 —
c2Xsapa1Wi+a1X1boa2Z2+apa2Z2¢1Y1 —apaz2Z2¢121 +
apazZ2c1W1—aoaz2Z2a1 W1 —a1 X1a2Yabo+coc1 X1a2Z2 —
coa1X1a2Z2 —a2Y2a1Z1bo + c2X2a1Y1bo —a2X2c1Y100 +
a2 X2a0c121 —a2X2a0c1W1—c1X1boazZ2+c1 X1a2Y2b0 —
a2X2a1Y1bo —boazZ2c1Z1 + boaz Z2c1W1 — coazZ2¢1Y1 +

coazZ2c121 — coazZ2c1 W1 — boaz Z2a1 W1 + bob1 Z1¢2Z2 +
bob1Z1c2Y2 — Z1biboaxZ2 — ZibraoazZ2 — a2Y2b1 Z1co —
b1Y1bocaZ2 — b1Y1boc2Ya — c1X1a0a2Z2 + c2 X2a0a1 21 +
ZicobiazZa — a1Y1bocaYa — a1Y1boca Za + a1YibocaWa —
a1Y1boaaWa +a1Y1a2Z2co + a2Yaboc1Z1 +azYabpar Wi —
a2Yaboc1 Wi +coa2Z2a1 W1+ c1Y1boaa Wa —c1Y1bocaWa +
c1Y1bocaZ2 + a1 X1a0c2 X2 — c1X1a0c2 X2 + b1 YibocaWa +
2b1Y1a2Z2co—2c2X2b1Y1a0+2a2 X2b1 Y1a0—2boaz Z2c1 Y1+
2a1Y1a2Z2bg — 2b1Y1a2Z2a0 = 0

3. Minimal linear invariant: one relation

Let S denote the set of parameters describing the
object shape. Let D denote the data - a set
of image measurements. Let 7 = {f!(S,D) =
0}£ | denote the set of independent model-based
invariants; we assume that each model-based in-
variant is polynomial.

We start with the simple case where 7 includes a
single relation I : f(S,D) = 0. We seek a decom-
position of f() in the following compact way, ex-
plicitly separating image variables D from shape
variables S:

£(8,D) =" gi(8) * hy(D) =0 (1)
k=1

gr and hj, are polynomial functions of the shape
S and the image D respectively. We call (1) the
canonical representation of f(S,D). Note that if
f(S,D) is algebraic, as we assume here, such a
decomposition always exists.

In the simplest case where r = 2, (1) would
become:

=

n

g
I

hi1(D)g1(S) + h2(D)g2(S)

Thus if r = 2, the model-based invariant f() = 0
is really a model-free (a “true”) invariant.

3.1. Algorithm

The algebraic expression f(S,D) = 0 can always
be written as a sum of multiplications since f() is
polynomial; we start by arbitrarily choosing one
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such representation for f(S,D):
f(S,D)ﬁzzqijsidj:S-Q-dTZO (2)
i=1 j=1

where ¢;; are constants, s; and d; are distinct
products of element of S and D respectively, s =
[$1y---,8n), d =[d1,...,dn], and @ is the n x m
matrix whose elements are g;;.

Definition 1. @ is the complexity-matrix of
the relation f(S,D) =0.

Theorem 1. The minimal linear decomposi-

tion f(S,D) = XT: 9k(S) * hi(D) has r terms,
=1

k=
where r is equal to the rank of the complexity-
matriz Q.

Proof: The theorem follows from (2), the
fact that elementary operations on the rows and
columns of a matrix are algebraic operations, and
because the rank of a matrix is the minimal num-
ber of outer products of vectors that sum to the
matrix. Note, however, that this representation
obtains the minimal number of terms in a limited
context, where a term can only be a linear combi-
nation of s;’s or d;’s. O

Algorithm to compute the minimal linear
model-based invariant:

1. Compute the SVD (or similar) decomposition
of Q = USVT; the rank of @ is equal to the
number of non-0 elements in the diagonal ma-

trix X.
2. By construction

f(8,D) = sUxvTdT =g(S)-hT (D)
Z gi(S)hi (D)
=1

g(S) = [91(S),...,9:(8)] =sUVE

=
g
[

[h(D),..., h(D)] =dVVE

Although the rank of @ is unique, the decom-
position above is not; other expressions can all
be derived using the same SVD decomposition.

For example, we can decompose the complex-
ity matrix Q as Q = (UVEZH)(H-'(VEV)T),
where H denotes any regular r x r matrix. Now
f(S,D) = g'(S) -h'T (D), where g'(S) = sUVIH
and h'(D) = dV+/ZH. Thus there are essentially
r2 —1 (-1 from homogeneity) independent decom-
positions of type (1).

3.2.  Example: 6 projective points

We use the notations of Section 2 and the defini-
tions above, where:

¢ S denotes the set of 4 shape variables X7, Y7,
Zy, W1, - the 3D projective coordinates of the
6th point.

¢ D denotes the set of 6 image variables ag, bg,
co, a1, by, c1; these are the image measure-
ments - the projective image coordinates of
the points.

In this case we get the following model-based
invariant (see Section 2.1):

f(S,D) = aohiZ1Yi + a1Yi’by — c1Xi%ap —
a0a1Z12+a0b1Z12—b1Y12bo+coa1Z12—cob1Z12—
b0a1Z12 + b0b1Z12 + a1X12a0 - a1Y1a0X1 +
a1Y1ra0Z, + c1Y1boZy — Yia1Z1co + coa1 Z1 Xy —
cob1Z1Y1 — boa1 Z1 X1 — a1Y1boZ1 — 1 X1Y1bo +
X1b01Yibo + c1 X1Y1a0 + Xiapb1 Z1 — ey X100 71 +
C0X1b1Z1 — X1b0b1Z1 + 01X1a0W1 - C0611Z1W1 +
cob1 Z1W1 + agar Z1 W1 — agb1 Z1 W1 + b1 Y1bgW1 +
boa1 Z1 W1 —bob1 Z1 W1 — c1Y1bo W1 — a1 X1aoW1 —
2X1b1Yiag +2a,Y100X1 =0

In order to represent f(S,D) as a sum of mul-
tiplications as required in (2), we observe the fol-
lowing;:

1. There are 10 shape monomials s;, thus n = 10
and

s = [)(12,)(1}/1,)(1Z1,)(1[/[/'1’}/127
YViZ1, Y\ W, Z3, Zy Wy, W] (3)

2. There are 9 image monomials d;, thus m =9
and

d= [aoalaaobbaocla boay, boby,
boChCOal,Cobl,Cocl] (4)
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3. The complexity matrix @ is 10 x 9, where
QI, 7] is the coefficient of s;d; in the expres-
sion above. For example, from the first term
in the expression above Q[6,2] = 1. Thus:

ri{ -1 0 -1 0 1 0 -1 1 0

0 21 0 0 1 0 1 —-10

-1 1 -1 1 0 0 0 0 0 0

0 2 -1 0 0 -1 0 -1 1 0
Qq"T=0 1 -1 0 -1 0 1 1 -10
0 -1 0 0 1 1 —1 0 0 0

0 0 1 0 0 -1 0 1 —-10

0 0 1 0 0 -1 0 —-1 1 0

Lo 0 0 0 0 0 O 0 0 0]

We use Gaussian elimination to decompose @)
as Q = UVT, where U is 10 x 5, and V is 9 x 5.
Many matrices U satisfy these conditions, and we
choose a relatively “simple” one:

QT = vu” (5)
r1 1/2 0 0 —1/27
0 1 -1 0 1/2
-1 -1/2 1 0 0
0 -1 1 0 -1/2
Vv = 0 —-1/2 1 1 1/2
0 1/2 0 -1 0
0 0 -1 0 1/2
0 0 -1 0 -1/2
Lo o o0 0 0 |
10 0 -1 0 000 0 O
0 -2 0 0 0 200 0 0
vl = 0o 0 -1 0 0 100 0 O
00 0 0 -1010 0 0
L0 0O 0 0 0 002 -20

Since the rank of ) is 5, we can rewrite the
model-based invariant f(S,D) as follows:

£(8,D) =g(S)-h"(D) = Zg,(smi(D) =0(6)

where (3), (5) give

X2 X, W,
=2X.Yh +2Ya 2y
-XiZhi+V 2 (7)
Y2+ Y1y
272 — 27, W,

g(S)=s-U=

and (4), (5) give

h(D) =d-V = [a1a0 — C14q9 , 0.5@1@0 + (lobl —
0.501&0 - b0a1 —0.5b0b1 +0.5b001 y — aob1 +cia9+
b0a1 +b0b1 —Coa1 —C(]bl ) b0b1 —b0c1 y —0.5a1ao+
0.5a9b1 — 0.5bpa1 + 0.5bob1 + 0.5¢pa1 — O.SCobl]

4. Minimal linear invariant: multiple re-
lations

Let S, D and Z = {f!(S,D) = 0}~ as in Sec-
tion 3. We now consider the general case where 7
includes L > 1 relations. We look for a simulta-
neous decomposition of the L relations, such that
they have a minimal number of terms, and the
shape terms are identical in all the relations. More
specifically, we look for a simultaneous decompo-
sition:

F1(8,D) = gk(S) * hi,(D) = 0
k=1

where g5 and hﬁc are polynomial functions of the
shape S and the image D respectively. Note that
gx(S), the shape terms, do not depend on the in-
dex [ - this is what we mean by simultaneous de-
composition of the L relations.

4.1.  Algorithm

We start by writing each algebraic expression
fY(S,D) = 0 as a sum of multiplications:

n m

Fi8,D)~ > > ¢sidj=s-Q'-d" =0 (8)

i=1 j=1

where s; and d; are distinct products of element
of S and D respectively, s = [s1,...,8,], d =
[d1,-..,dn], and Q' is the n x m matrix whose ele-
ments are qﬁj. From Def. 1, Q! is the complexity-
matrix of the relation f!(S,D) = 0.
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Definition 2. @, the matrix obtained by con-
catenating the I matrices Q' from left to right, is
the joint complexity-matrix of 7.

Note that the size of @) is n x Lm. Note also the
asymmetrical role of rows and columns here: the
row variables are shape variables, and thus should
be the same for all invariants; the column variables
are data variables, and thus can (and should) vary
for different invariants.

Theorem 2. The mim’marl simultaneous linear
decomposition f(S,D) = Y gr(S) * hy(D) has
k=1

r terms, where r is equal to the rank of the joint
complexity-matriz Q.

The proof is similar to the proof of theorem 1,
with the same restriction: the number of terms is
minimal in a limited context, where a term can
only be a linear combination of s;’s or d;’s.

We can now derive the following algorithm to
compute the minimal simultaneous linear decom-
position of model-based invariants:

1. Compute the SVD (or similar) decomposition
of the joint complexity matrix Q = ULVT.

2. For each invariant, find a decomposition Q' =
U(VYHT; below we specifically use (V)T =
(UX)*Q!, where (UX)T denotes the pseudo-
inverse of (UX).

3. By construction

7'(8,D) = sU(V")Td" = g(S) - (0'(D))”
Zgz-(S)hxD)

B
©
I

[91(S), - ..

h'(D) = [h{(D),...,

JQT‘(S)] =sU
hi.(D)] = dV!

— AQ)'US(US)'UT) !

4.2.  Ezample: 7 projective points

We use the notations of Section 2 and the defini-
tions of Section 3, where:

¢ S denotes the set of 8 shape variables X1, Y7,
Z1, Wi, Xo, Yo, Zs, Wy - the 3D projective
coordinates of the 6th and 7th points.

¢ D denotes the set of 9 image variables ag, b,
o, a1, b1, €1, az, by, co; these are the image
measurements - the projective image coordi-
nates of the points.

In this case we have 4 independent model-based
invariants (see derivation in Section 2.2); one is
given below, the other 3 look similar and are there-
fore omitted.

FYS, D) = —b1YiboasWa — cob1 Z1c2Z2 — cob1 ZicaYa —
c2X2c1Y1bg — c2 X2bob1Z1 — cob1 Z1a2W2 — a2 X2b1Y1bo +
a2 Xsa0c1 X1 + c2aX2a0b1Z1 — a2Yab1 Z1bo + c2 X2b1Y1bo +
aob1Z1a2Wa — a2 X2a0b1 Z1 + a2 X2bob1 Z1 +b1Y1a2Z2bo +
cocaXab1Z1 — coaa X2b1Z1 +aaXac1Y1bo +aob1 Z1caZa +
aob1Z1c2Y2 + a2Y2b1Z1ao + a2bob1Y1Y2 + cob1 ZicaWa +
apa1a221Z2 —ai1a2c0Z1%2+a1a2boZ1Z2 —apara2 X1 X2 —
apb1 Z1caWa+ca2 Xac1Y1a0—c2 X2a0c1 21 +a2 Xea9a1 Wi+
azX2a1Y1a09 — c2X2a1Y100 — a1Y1a2Z2a0 + c2Yaboc1Y1 +
bob1 Z1a2Wa —bgb1 Z1caWa —az2X2apa1Z1 +a1X1a0a22Z2+
ca X2apc1 W1 —c2X2a0a1Wi1+a1X1boazZ2+apazZ2c1Y1—
apaz Z2c1Z1+apazZ2c1Wi—agazZ2a1 W1 —a1 X1a2Ya2bo+
coc1X1a2Z2 — coa1X1a2Z2 —az2Y2a1Z1bo + c2 X2a1Y1bo —
a2Xa2c1Y1ap+a2X2a0c121 —a2X2a0c1 W1 —c1X1boaa Z2 +
c1X1a2Y2bp —a2X2a1Y1bo —boazZac1Z1 +boaz Zaci Wi —
coazZ2c1Y1 +coazZ2c1Z1 — coazZaciWi — boaz Z2a1 Wi +
bob1Z1c2Z2 + bob1 Z1c2Ya — Z1biboaz Z2 — Zibiraoaz Z2 —
a2Y2b1Z1co — b1Y1bocaZ2 — b1Y1boc2Yo — c1X1a0a222 +
caXsapa1Z1 + Zicobraz Za — a1Yi1bocaY2 — a1Y1bocaZa +
a1Y1bocaWa —a1YiboaoWa +a1Y1a2Zaco +az2Yoboc1 Z1 +
a2Y2boa1 W1 —aaYabgci W1 +coazZza1 Wi +c1Y1bgas Wa —
c1Y1bgcaWa +c1Y1boca Za + a1 X1a0c2 X2 —c1 X1a0c2 X2 +
b1Y1bocoWa+2b1Y1a2Z2co—2c2X2b1 Y1a9+2a2X2b1 Y100 —
2boazZ2c1Y1 + 2a1Y1a2Z2bg — 2b1Y1a2Z2a9 = 0

In order to represent f!(S,D) as a sum of mul-
tiplications as in (2), we observe the following;:

1. There are 16 shape monomials s;, thus n = 16
and

5= [X1X2>X1Y'2;X1Z2;X1W2)Yv1X27
leyr27Y1Z27Y'1W27Z1X27'"7W1W2] (9)

2. There are 27 image monomials d;, thus m =
27 and

d = [aga1a2,apa1by, apa; cz,
agbiay, ..., 000102] (10)
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3. The complexity matrix Q' is 16 x 27, where
Q'[4, 4] is the coefficient of s;d; in the expres-
sion above. Q'[1,1], for example, contains the
coefficient of agaias X1 X5 from the expression
above, which happens to be -1. Thus we get
the following full description of Q!:

-1 0 0 -2 0 O 1 0 0 2 0 -1 1 0
0O 0 o0 0O 0 0 0O o0 0 -1 0 1 -1 0
-1 0 1 -1 0 1 i 0 -1 0 0 O 1 0
0O 0 O 1 0 1 0O 0 O -1 0 0 -1 0
i 0 0 -1 0 1 -1 0 ©0 1 0 0 -1 0

Similarly, we rewrite f2(S,D), f3(S,D), and
(S, D), to construct @2, @3 and Q* in a similar
way. The joint complexity matrix () is constructed
by concatenating Q', Q% Q%,Q*, and its size is
16 x 108.

The rank of @ is computed to be 11. Using
Gaussian elimination, we compute a decomposi-
tion Q = UVT, where U is 16 x 11, and V is
108 x 11. Many matrices U satisfy these condi-

tions, and we choose the following relatively “sim-
ple” one:

0 1 0 0o -2 0 0 0 0 0 0
0 0 0 0 0 -1 0 0 0 0 0
0 0O =1 0 2 0 2 0 0 0 0

U= (11)

0 0 0 0 0 0o -2 0 -1 0 0
0 0 0 0 0 0 0 0 0 -2 0
0 0 0 0 0 0 0 0 0 2 -2

U is used to obtain the individual decomposi-
tions:

Q' =U(W) = (V)T = UT0) UTQ(12)

Finally, we rewrite the model-based invariants
f4(S,D), I = 1..4. For example, take f(S,D):

F1(s,D) =g(S) - (W' (D))" = gi(S)h}(D) =0
i=1

where (9) and (11) give

X1 Xo + Wi X5
- X1V +Y1X
X122 —Y1Z>
—2X1Xs +2X W,
21 Xo +2Y1 25
Yo + Y1,
2Y17Z5 — 27,1Ys
21 Wy — 2W1 Y,
71Xy — Z1Ys
— 272175+ 221 Wy
—272.Ws + 2W1 Z,

and (10), (11), (12) give

hl(D) = [dl, .- .,d27] . Vl = [a0a1a2 — a1a9C2 —
azaoci + ciaoc2 , boaraz — bociaz , aoaiaz —
azaoct +boaraz —bocraz —coaraz +cociaz , o,

laoalaz + %ala(]CQ —apbias + apbice + %GQG/(]Cl -
5€1a0C2 + b0a1a2 - %boalcg + %boblaz - %boblcz
boclaz + %boclcg y boalcz - b0b1a2 + b0b102 -
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1 1 1
bocica , 5apaiaz — 5aiaoc2 — agbicz — 3a2a0c1 +

l(31(1002—i—%b()611(12—5500102-}—0051612 ) —%50(11624-
sbociaz , —apaiaz + ajapcz — agbras + agbicz +
azapcy — c1agCy + bobiay — bobica — cobraz +
cobicy , —iagaias+iagbias—Ltagbicy+iasage; —

1

—b0a1a2+§b0b1a2—§b0blc2+§bgclaz—|—§coa1a2—
1 1 1

—Coblaz + Ecoblcg - 50061&2 y - 50100110/2 +

1

5(120/061 - %boalaz + %boclaz + %Coalaz - 26001(12]

5. Adding class constraints

Once it has been shown that model-free invari-
ants do not exist for unconstrained objects [1, 10],
attention had turned to characterizing the con-
straints (or classes of objects) which would lead to
model-free invariants [10, 12]. The present analy-
sis allows us to ask this question as part of a more
general problem: what class constraints on objects
reduce the number of terms in the minimal linear
decomposition? In this section we determine suffi-
cient conditions on class constraints to reduce the
number of terms, in particular to reduce it to 2
(implying the existence of model-free invariants).
We start from a relation

£(8,D) =" gi(S) * (D) =0
k=1

where g (S) and hg (D) are polynomial functions
of the shape and image measurements respec-
tively. Every class constraint of the form A(S) =
0, where A(S) divides some Y argx(S), reduces
the number of terms in the minimal decomposi-
tion by at least 1. Thus:

Theorem 3. (class constraints:)  To reduce
the minimal number of terms from r to p < r, the
class constraints should provide at most (r — p)
independent constraints of the form X\;(S) = 0,
where each \;(S) divides some > aygr modulo the
/\j(S), 7 <.

Clearly there is a tradeoff between complex-
ity (the number of terms), which is higher for
more general (and less constrained) classes, and
the density of the database, which is smaller for
more general classes (as there are fewer types of
such general objects).

Example: given 6 points and a perspective
camera, r = 5 (see Section 3.2).

¢ From the minimal model-based invariant de-
veloped in Section 3.2, and the theorem above,
it immediately follows that if any of the pa-
rameters of the 6th point, Xi,Y7, 72y, Wy,
equals 0, then r = 3; if any 2 parameters of
the 6th point are equal, then » = 3. Thus if
4 of the 6 points are coplanar, the number of
terms in the minimal model-based invariant is
3.

e If 2 pairs of the 4 parameters X1, Y1, Z1, W3
are equal then r = 2, namely, there is a model-
free invariant. The geometry of this case is as
follows: one point lies on the line of inter-
section of 2 of the planes, each spanned by
triplets of the remaining 5 points.

6. Reconstruction example: lab sequence

We use a real sequence of images from the 1991
motion workshop, which includes 16 images of a
robotic laboratory obtained by rotating a robot
arm 120° (one frame is shown in Fig. 1). 32 corner-
like points were tracked. The depth values of the
points in the first frame ranged from 13 to 33 feet;
moreover, a wide-lens camera was used, causing
distortions at the periphery which were not com-
pensated for. (See a more detailed description in
[13] Fig. 4, or [7] Fig. 3.)

We compute the shape of the tracked points as
follows. We first choose an arbitrary basis of 5
points; for each additional point we:

1. compute g(S) as define in (7), using all the
available frames to solve an over-determined
linear system of equations, where each frame
provides the constraint given in (6).

2. compute the homogeneous coordinates of the
6th point [X,Y,1, W] from g(S) using

2g1(S) + g2(S) — 2g3(S)

X =
g5(S) — 2g3(8)
vV = g2(S) — 2g4(8S)
g5(S) + 2g5(S)
W _ (82(8) —2g4(S)) g5(S)

(2g5(8) +485(S)) 83(8)
(281(8) +82(S) — 283(S)) 85(S)
(2g5(S) —4g3(8)) 83(S)
3. in order to compare the results with the real
3D shape of the points, we multiply the pro-
jective homogeneous coordinates by the actual
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Fig. 1. One frame from the lab sequence.

3D coordinates of the projective basis points,
to obtain the equivalent Euclidean represen-
tation.

The real 3D coordinates of about half the points
in the sequence, and the corresponding recon-
structed 3D coordinates, are the following:
real shape:

-03 —-1.7 -0.3 1.8 53 99 3.2
-4 —-26 44 63 42 —-1.6 —2.8
16.4 17.1 19.7 20 25.3 29.8 31.6

-23 15 —-06 0.5 1.5 —0.5
-2 5 3 2 09 1
15.1 21.7 21.5 21.6 21 21.6
reconstructed shape:
-03 -1.8 06 09 38 89 -0.8
-36 -13 5 6.2 44 -15 0.7
15.8 14.7 21.5 249 275 30.1 9.7

-24 07 —-06 03 13 —-04
-13 48 26 18 04 0.7
13.4 23.5 20.2 21.1 21.1 19.2

The median relative error, where the relative
error is the error at each point divided by the
distance of the point from the origin, is 12%.

7. Summary

We described an automatic process to simplify
model-based invariants by re-parameterizing them
in a linear way, and with a minimal number of
terms. We demonstrated this process on 2 ex-
amples, using model-based invariants of 6 and 7
points under perspective projection. Thus, for ex-
ample, we obtained 4 homogeneous linear equa-
tions with 11 unknowns using the invariants of 7
points. We can use these invariants to compute
the shape of the 7 points with a linear algorithm,
using at least 3 frames and least squares optimiza-
tion (since the data is redundant).
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