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Abstract—The clustering of unlabeled raw images is a daunting
task, which has recently been approached with some success
by deep learning methods. Here we propose an unsupervised
clustering framework, which learns a deep neural network in an
end-to-end fashion, providing direct cluster assignments of im-
ages without additional processing. Multi-Modal Deep Clustering
(MMDC), trains a deep network to align its image embeddings
with target points sampled from a Gaussian Mixture Model
distribution. The cluster assignments are then determined by
mixture component association of image embeddings. Simultane-
ously, the same deep network is trained to solve an additional
self-supervised task of predicting image rotations. This pushes
the network to learn more meaningful image representations
that facilitate a better clustering. Experimental results show that
MMDC achieves or exceeds state-of-the-art performance on six
challenging benchmarks. On natural image datasets we improve
on previous results with significant margins of up to 20% absolute
accuracy points, yielding an accuracy of 82% on CIFAR-10, 45%
on CIFAR-100 and 69% on STL-10.

I. INTRODUCTION

Clustering involves the organization of data in an unsuper-
vised manner, based on the distribution of datapoints and the
distances between them. Since these properties are closely tied
to the representation of the data, the problems of clustering
and data representation are firmly connected and are therefore
sometimes solved jointly. In accordance, in this work we start
from a recent method for the unsupervised computation of
effective data representation (or features discovery), and de-
velop a clustering method whose results significantly improve
the state of the art in the clustering of natural images. The
method is illustrated in Fig 1.

The task of unsupervised image clustering is challenging
and interesting, as the algorithm needs to discover patterns in
highly entangled data, and produce separated groups without
explicitly specifying the grouping features. A large body of
work has been devoted to the problem of clustering [20], see
Section II for a brief review of some recent related work.
In recent years, with the emergence of deep learning as the
method of choice in visual object recognition and image
classification, emphasis has shifted to the computation of
effective representations that will support successful clustering
[30]. Vice versa, unsupervised clustering loss has been used
to drive the computation of image representation and the
discovery of enhanced image features by making it possible to

Fig. 1. Our algorithm partitions a set of images into k clusters by aligning
image embeddings with target points sampled from a Gaussian Mixture Model
on the k-dimensional unit sphere.

use unsupervised data in the training of deep networks, which
traditionally require massive amounts of labeled data.

When learning feature representation from unsupervised
data by minimizing a clustering-based loss function, one
danger is cluster collapse - the representation may collapse
to the trivial solution of a single cluster. In [3], a similar
problem of representation collapse is managed by mapping
the network’s representation to a fixed set of randomly chosen
points in some target features space. Here we borrow this
mapping idea, and incorporate it into a clustering algorithm.

More specifically, we first sample a fixed set of points in
some target space. Since our method is designed to partition
the data into k clusters, the target points are chosen from a
matched density function - Gaussian Mixture Model (GMM)
with k components. Our model trains a randomly initialized
neural network to align its image embeddings with the sampled
target points, directly inducing a partition that is based on the
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mixture components. This is done by simultaneously learning
a one-to-one mapping between the output of the network and
the target points, and updating the networks parameters to best
fit images with their target points as assigned by the mapping.

In the absence of ground truth, the proposed approach is
prone to instability as target points are continuously reassigned
between images, creating a non-stationary online learning
environment. Such instability is often linked with unsupervised
learning tasks. To alleviate this problem, unsupervised tasks
such as representation learning may be combined with self-
supervision tasks to achieve better results [10]. Here we adopt
the approach taken by [6] to deal with the notorious instability
of training generative adversarial networks. Thus the model
is jointly trained on the main clustering task and on a self-
supervised auxiliary task as defined in RotNet [14], where all
images are subjected to 4 rotation angles. In this auxiliary task
the network is trained to recognize the 2D rotation of each
rotated image.

For computation engine, our method uses off the shelf Con-
vNets and standard SGD training with mini-batch sampling in
an end-to-end fashion. It is therefore scalable to large datasets.
We evaluate our method on several standard benchmarks in
image clustering, which is the goal of our method, significantly
exceeding the state of the art on the 5 natural image datasets.

The rest of the paper is organized as follows: In Section II
we briefly review recent related work. In Section III we
describe our method in detail and elaborate on its various
ingredients. Experimental results are reported in Section IV.

II. RELATED WORK

Data clustering. The objective of data clustering is to
partition data points into groups such that points in each group
are more similar to each other than to data points in the other
groups. Traditionally, clustering methods have been divided
into density-based methods [24], partition-based methods [12],
and hierarchical methods [11]. Partition-based methods, such
as the popular k-means [1], [32], minimize a given clustering
criterion by iteratively relocating data points between clusters
until a (locally) optimal partition is attained. Density-based
methods define clusters as areas with high density of points,
separated by areas with low density of points [37]. Hierarchical
based methods build a hierarchy of clusters in a top-to-bottom
[34] or bottom-to-top [16] manner to determine clustering.

Representation Learning. Naı̈vely attempting to cluster
images with traditional approaches does not produce a pleasing
partitions of the images, as they work on the raw representa-
tions of the images in pixel space, whereas semantically simi-
lar images are not necessarily similar in the high-dimensional
pixel space in which the images reside. In recent years learning
useful image representations in an unsupervised manner has
been dominated by deep-learning-based approaches. Autoen-
coders (AEs) [2] encode images with a deep network and are
trained by reconstructing the image using a decoder network.
These include several variations such as sparse AEs, denoising
AEs [36], and more [29], [41]. Generative models such as
Generative Adversarial Networks (GAN) [15] and variational

autoencoders (VAE) [22] learn representations as a byproduct
of learning to generate images. Tightly connected to our
work, Noise-As-Targets (NAT) [3] and DeepCluster [4] adopt
a training strategy of iteratively reassigning psuedo-labels to
points while training the network to fit them (see Section III).

Self-supervised learning. A family of unsupervised learn-
ing algorithms that gained popularity in recent years are self-
supervised methods. They learn representations by training a
deep network to solve a pretext task, where labels can be
produced directly from the data. Such tasks can be jigsaw
puzzle solving [31], predicting the relative position of patches
in an image [9], generating image regions conditioned on their
surroundings [33], or more recently predicting image rotations
(RotNet) [14]. In self-supervised GANs [6], predicting image
rotations is used as an auxiliary task to stabilize and improve
training, by enhancing the discriminator’s representation ca-
pabilities. Here we adopt this approach as well, as elaborated
later on.

Deep clustering. The dominant and most successful ap-
proach to clustering of images in recent years has been to
incorporate the tasks of representation learning and clustering
into a single framework. Prominent works in the past years
have been Joint Unsupervised Learning (JULE) [40], where
the authors adopt an agglomerative clustering approach by it-
eratively merging clusters of deep representations and updating
the networks parameters. Deep Adaptive Clustering (DAC)
[5] recasts the clustering problem into a binary pairwise-
classification framework, where cosine distances between im-
age features of image pairs are used as a similarity measure
to decide if they belong to the same cluster. Associative Deep
Clustering (ADC) [17] jointly learns network parameters and
embedding centroids with an association loss in order to esti-
mate cluster membership. More recently, Invariant Information
Clustering (IIC) [21] adopts an approach that achieves cluster-
ing based on maximizing the mutual information between two
sets: deep embeddings of images, and instances of the images
that underwent random image transformations while keeping
the image semantic meaning intact. IIC leverages auxiliary
over-clustering to increase expressivity in the learned feature
representation, improving the representation capabilities of its
network. This tactic bears resemblance to our incorporation of
rotation prediction as an auxiliary task.

III. METHOD

Our goal is to partition a set of images into k clusters,
which reflect internal structure in the data. Fig. 2 shows an
overview of the proposed approach. The algorithm alternates
between solving the main unsupervised clustering task, and an
auxiliary self-supervised task that helps the training process.
The ingredients of the method are described next. The full
method is summarized in Algorithm 1.

A. Unsupervised learning

The starting point for this work is an unsupervised learning
framework for learning image representation from unlabeled
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Fig. 2. Our approach takes a set of images and solves two tasks in alternating epochs. In the primary task, a CNN is trained to produce output which matches
some predefined set of target points sampled from a Gaussian mixture model, and optimally aligned with the training set. In the secondary task, given a
rotated image, the same CNN is trained to predict the rotation angle of the image.

data. The method, Noise as Targets [3], learns useful rep-
resentations of images by training a deep network to align
its images’ embeddings with a fixed set of target points. The
target points are uniformly scattered on the d-dimensional unit
sphere.

More specifically, let X = {xi}ni=1 denote a set of images,
and fθ : X → Z the parameterized deep network we wish
to train. The output of fθ is normalized to have `2 norm
of 1, entailing that Z is the d-dimensional unit sphere. NAT
starts by uniformly sampling n targets on this unit sphere.
Let {ti}ni=1 denote the set of target points, which remain
fixed throughout the training. Each image xi is assigned a
unique target yi through a permutation P : [n] → [n]. The
optimization objective is formulated as

min
θ,P

1

n

∑
i

`(fθ(xi), yi) yi = tP (i) (1)

where ` is the Euclidean distance.
This optimization problem is solved in a stochastic manner,

by iteratively solving it over randomly sampled mini-batches.
Given a mini-batch of images Xb, the current representation
vectors fθ(Xb) are first computed. Subsequently, Equation (1)
is optimized for P over the points in mini-batch Xb using the
Hungarian method [26], which reassigns the currently assigned
targets of the mini-batch to minimize the Euclidean distance
(`2) between images and their assigned target points. Finally,
the gradients of fθ on Xb with respect to θ are computed, and
an SGD step is executed.

Intuitively, NAT permutes the assignment of image rep-
resentation vectors to target points delivered by fθ, so that
nearby embedding vectors are mapped to nearby target vectors,
and then updates θ accordingly. This process leads to the

grouping of semantically similar images in target space, and
to effective representations that perform well in downstream
computer vision classification and detection tasks.

B. Multi-modal distribution of target points

The uniform distribution of target points on the unit sphere,
as described above, is not well suited for unsupervised cluster-
ing, since it is likely to blur the dividing lines between clusters
rather than sharpen them. Instead, multi-modal distribution
seems like a natural choice for the objective of clustering,
as it directly produces separated groups in target space.

In this work, we propose to use the mixture of Gaussians
distribution, projected to the unit sphere, for the sampling of
target points. Formally, this implies:

p(u) =

K∑
k=1

αk · pk(u) u ∈ Rd

p(ti) =

∫
u

‖u‖2
=ti

p(u)du ti ∈ Z
(2)

where K denotes the number of Gaussians in the mixture,
d the dimension of the embedding space, αk=1..K a cate-
gorical random variable, and pk(u) the multivariate normal
distribution N(µk,Σk), parameterized by mean vector µk and
covariance matrix Σk. In the absence of prior knowledge
we assume that the mixture components are equally likely,
namely αk = 1

K ∀k ∈ [K]. Finally, since the target points are
constrained to lie on the unit sphere, we project the sample in
Rd to the unit sphere by ti = u

‖u‖2 .
We define the cluster assignment ci of image xi as follows

ci = arg min
k

‖fθ(xi)− µk‖2 (3)



Algorithm 1:
Input:
{xi}ni=1 - images
fθ - ConvNet with two heads
k - number of clusters
epochs - number of epochs to train
iters - number of iterations in an epoch
σ - variance of normal distribution
d - dimension of embedding space
λc, λr - learning rates
g - random image transformation
r - number of instances of g in a batch
Init:
P ← initialize with random assignments
θ ← initialize with random weights
T ← initialize empty list
for i = 1...n do

sample c ∼ Categ( 1
K , ...,

1
K )

sample u ∼ N(µc, σ · Id×d)
T [i]← ti = u

‖u‖
end for
for e = 1...epochs do

for i = 1...iters do
sample batch Xb and assigned targets Tb
compute fθ(Xb)
update P by minimizing Equation (1) w.r.t P
compute ∇θLc(θ) of Equation (1) for g(Xb)
update θ ← θ − λc∇θLc(θ)

end for
for i = 1...iters do

sample batch Xb

rotate Xb ∀r ∈ {0°, 90°, 180°, 270°}
compute ∇θLr(θ) // Lr is cross-entropy loss
update θ ← θ − λr∇θLr(θ)

end for
end for

Note that if the final network fθ fits that target points exactly,
namely fθ(xi) = yi, and if Σk are the same ∀k, then with
high probability ci is the index of the mixture component from
which target point yi has been sampled.

C. Image Transformations

Data augmentation is a useful and common technique to
improve performance of machine learning algorithms. Usually,
random image transformations such as cropping, flipping,
rotation, scaling and photometric transformations are applied
to images in order to expand the dataset with new and unique
images. In our task of unsupervised clustering, these random
transformations are essential, because they provide several
instances of the same image that appear different but share the
same semantic meaning as they contain the same object. Let
g denote a random image transformation. In our method, we
use the center crop of an image when minimizing Equation (1)

w.r.t P . When minimizing the same equation w.r.t θ, we first
apply g to the image. Why is this algorithmic ingredient
useful? When training the ConvNet, it must find common
patterns between the original images and transformed images
when fitting them to the same target. These common patterns
are likely to appear in other images in the dataset belonging
to the same class. This pushes the network to map images
that contain the same objects closer to each other, in a similar
manner to the beneficial effect of self-supervision.

D. Auxiliary task

While optimizing the clustering objective (1), the ConvNet
model simultaneously learns image representation and parti-
tions the images. The success of unsupervised clustering is
highly correlated with the quality of the learnt representation.
It has been repeatedly shown that self-supervision methods
can significantly improve the quality of representations in
an unsupervised learning scenario. To benefit from this idea,
we employ RotNet [14], which is a self-supervised learning
algorithm that learns image features by training a ConvNet
to predict image rotations. Specifically, images are rotated by
r degrees where r ∈ {0°, 90°, 180°, 270°}, and the model is
subsequently trained to predict their rotation by optimizing the
cross-entropy loss. RotNet produces competitive performance
in representation learning benchmarks, and has been shown to
benefit training in other tasks, when incorporated into a model
as an auxiliary task [6], [13], [28]. We incorporate RotNet
into our method, modifying the ConvNet training procedure
to alternate between optimizing the main clustering task and
this secondary auxiliary task.

E. Refinement Stage

As we have no prior knowledge regarding the size of the
clusters, we begin by assuming that clusters’ sizes are equal.
When this assumption cannot be justified, we propose to
augment the algorithm with an additional step, performed after
the main training is concluded. In this step the assumption is
relaxed, while target points are iteratively reassigned based
on the outcome of k-means applied to fθ(x1), ..., fθ(xn), and
assigning image xi to target µj with label j ∈ [K] derived
from the outcome of k-means. This ingredient is similar to
DeepCluster [4], proposed by Caron et al. as an approach for
representation learning, where they perform the clustering on
the latent vectors of the model and not the final output layer.
A possible alternative method may start with this stage and
discard the first one altogether, as this approach makes no
assumption on the size of the clusters. However, we found that
starting off with reassigning labels based on k-means is not
competitive and produces less accurate clusters. For example,
training on MNIST results in low accuracy of 81% (±2.67).

IV. EXPERIMENTS

We tested our method on several image datasets that are
commonly used as benchmark for clustering, see results in
Table I. We compare ourselves to state-of-the-art methods such
as DEC [39], JULE [40], DAC [5], IIC [21] and DCCM [38].



TABLE I

UNSUPERVISED CLUSTERING RESULTS. THE RESULTS OF OUR METHOD ARE SHOWN BELOW THE SEPARATION LINE. FOR EACH DATASET, WE SHOW
THE AVERAGE RESULT OVER FIVE RUNS, STANDARD ERROR (STE) AND THE BEST RUN. ABOVE THE SEPARATION LINE WE LIST STATE OF THE ART

RESULTS FOR COMPARISON, SEE REVIEW IN SECTION II. UNREPORTED RESULTS ARE MARKED WITH (-).

MNIST CIFAR-10 CIFAR-100 STL-10 ImageNet-10 Tiny-ImageNet
NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

k-means 0.499 0.572 0.087 0.228 0.083 0.129 0.124 0.192 0.119 0.241 0.065 0.025
SC 0.663 0.696 0.103 0.247 0.090 0.136 0.098 0.159 0.151 0.274 0.063 0.022
AE 0.725 0.812 0.239 0.313 0.100 0.164 0.249 0.303 0.210 0.317 0.131 0.041
DEC (2016) 0.772 0.843 0.257 0.301 0.136 0.185 0.276 0.359 0.282 0.381 0.115 0.037
JULE (2016) 0.913 0.964 0.192 0.272 0.103 0.137 0.182 0.277 0.175 0.300 0.102 0.033
DAC (2017) 0.935 0.978 0.396 0.522 0.185 0.238 0.249 0.303 0.394 0.527 0.190 0.066
IIC (2019) 0.978 0.992 0.513 0.617 0.224 0.257 0.431 0.4991 - - - -
DCCM (2019) - - 0.496 0.623 0.285 0.327 0.376 0.482 0.608 0.710 0.224 0.108

Ours
avg. 0.971 0.990 0.703 0.820 0.418 0.446 0.593 0.694 0.719 0.811 0.274 0.119
ste ±.000 ±.000 ±.011 ±.019 ±.003 ±.006 ±.005 ±.013 ±.008 ±.012 ±.001 ±.001
best 0.973 0.991 0.720 0.843 0.423 0.464 0.609 0.741 0.732 0.830 0.277 0.121

Fig. 3. Unsupervised image clustering results on STL-10. Each column shows images from a different cluster. The top three images in each column are
examples of images from the same class successfully clustered together. The images in the fourth row illustrate failure cases, where the image is assigned to
the wrong cluster (e.g., an airplane assigned to the ’bird’ cluster).

In almost all cases our method improves on previous results
significantly1. Examples of clustering results on the STL-10
dataset of natural images are shown in Figure 3.

In the rest of this section we specify the implementation
details of our method, and analyze the results. Subsequently,
we report the results of an ablation study evaluating the various
ingredients of the algorithm, which demonstrate how they
contribute to its success. Our code is available online2.

A. Implementation details and evaluation scores

Datasets. Six datasets are used in our empirical study:
MNIST [27], CIFAR-10 [25], the 20 superclasses of CIFAR-
100 [25], STL-10 [7], ImageNet-10 (a subset of ImageNet [8])
and Tiny-ImageNet [8], see Table II. We are most interested

1Note that with STL-10, IIC reports an accuracy of 0.596 when using the
much larger unlabeled data segment that includes distractor classes.

2https://github.com/guysrn/mmdc

in the datasets that consist of natural images. These datasets
are commonly used to evaluate clustering methods.

TABLE II
THE IMAGE DATASETS USED IN OUR EXPERIMENTS.

Name Classes Samples Dimension

MNIST 10 70,000 28×28
CIFAR-10 10 60,000 32×32×3
CIFAR-100 20 60,000 32×32×3
STL-10 10 13,000 96×96×3
ImageNet-10 10 13,000 96×96×3
Tiny-ImageNet 200 100,000 64×64×3

Architectures. For the MNIST experiments we use a small
VGG model [35] with batch normalization [19]. Each block in
this neural network consists of one convolution layer, followed
by a batch normalization layer and ReLU activation function,
and ends with a max pooling layer. Our model has four blocks.
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Fig. 4. Comparison of clustering performance on MNIST with different Mixture of Gaussians initializations. We compare different dimensions for the target
vectors and different coefficient parameters (σ) for the covariance matrices of the gaussians. These results do not include performing the refinement stage.

For all other experiments we use a ResNet model [18] with 18
layers. These base models are followed by a linear prediction
layer, that outputs the cluster assignments. When trained on
the auxiliary task, the base model is also followed by another
linear head, which predicts the image rotation.

Training details. The network is trained with stochastic
gradient descent with learning rate 0.05 and momentum of 0.9.
We apply weight decay of 0.0001 for CIFAR-100 and Tiny-
ImageNet, and 0.0005 for all other datasets. We use batch
size 128 and perform random image augmentations which
include cropping, flipping and color jitter. When training on
the auxiliary rotation task, we rotate each image to all four
orientations, resulting in an effective batch size of 512. We
train the network for 400 epochs and decay learning rate by
a factor of 5 after 350 epochs. For MNIST we train for 50
epochs and decay learning rate by a factor of 10 after 40
epochs. Training on CIFAR-10 takes 10.5 hours on a single
GTX-1080 GPU.

Mixture of Gaussians. We examined several initialization
heuristics to determine the Gaussian means {µk} in the GMM
distribution defined in (2) and the covariance matrices {Σk}.
A comparison of different initialization schemes is provided
in Figure 4, where all vectors lie on the d-dimensional unit
sphere. Gaussian means {µk} are sampled from a multi-variate
uniform distribution within the range [−0.1, 0.1] and projected
onto the unit sphere. We always set Σk = σ · IK×K ∀k ∈
[K]. We compare different values for the dimension d and
the variance parameter σ. Smaller variance usually performs
best with the added benefit of similar performance for different
choices of dimension d. We therefore opted to use K different
one-hot vectors in RK for {µk} with variance σ = 0, as this
achieved good performance while reducing the number of free
hyperparameters.

Evaluation scores. To evaluate clustering performance we
adopt two commonly used scores: Normalized Mutual Infor-
mation (NMI), and Clustering Accuracy (ACC). Clustering
accuracy measures the accuracy of the hard-assignment to
clusters, with respect to the best permutation of the dataset’s
ground-truth labels. Normalized Mutual Information measures
the mutual information between the ground-truth labels and
the predicted labels based on the clustering method. The range

of both scores is [0, 1], where a larger value indicates more
precise clustering results. We use centrally cropped images for
evaluation.

B. Empirical Analysis

The results of our method when applied to the six image
datasets are reported in Table I. Clearly, our clustering algo-
rithm is able to separate unlabeled images into distinct groups
of semantically similar images with high accuracy, improving
the state-of-the-art in the five datasets of natural images.
Compared to previous state-of-the-art, we improve clustering
accuracy on CIFAR-10 by 20%, CIFAR-100 by 12%, STL-10
by 20%, ImageNet-10 by 10% and Tiny-ImageNet by 1%.

In the results reported in Table I, the refinement stage
was invoked only when using the MNIST dataset. A more
complete ablation study of the refinement stage is reported in
Table V. The auxiliary task of RotNet, which was shown to be
beneficial when learning natural images, was used to enhance
the clustering of all the datasets except MNIST. For reference,
we used the same image augmentations as in [21], which uses
a larger ResNet-34 as the backbone for the model.

TABLE III
CLUSTERING PERFORMANCE ON CIFAR-10, SHOWING THE COMBINED
EFFECT OF PRE-PROCESSING WITH THE SOBEL FILTER AND ADDING A
ROTATION LOSS. FIRST ROW: NO PRE-PROCESSING AND NO ROTATION

LOSS, SECOND ROW: PRE-PROCESSING AND NO ROTATION LOSS, THIRD
ROW: NO PRE-PROCESSING WITH A ROTATION LOSS, FOURTH ROW: BOTH.

Sobel Rotation loss NMI ACC

0.428 ± .005 0.492 ± .003
X 0.463 ± .003 0.560 ± .006

X 0.703 ± .011 0.820 ± .019
X X 0.610 ± .010 0.725 ± .020

Benefits of auxiliary task. Applying the Sobel filter to
an image emphasizes edges and discards colors. This pre-
processing is commonly done in the context of unsupervised
representation learning and clustering algorithms, presumably
to avoid sub-optimal solutions based on trivial cues such as
color [3], [21]. We observed an interesting interaction between
Sobel filtering and training with the auxiliary task of predicting
image rotations. Without the auxiliary task, Sobel filtering



TABLE IV
EVALUATION OF UNSUPERVISED FEATURE LEARNING METHODS ON CIFAR-10 AND CIFAR-100. WE USE THE PENULTIMATE LAYER OF THE NETWORK
AS IMAGE FEATURES AND TEST PERFORMANCE WITH TWO PROCEDURES. WE PERFORM K-MEANS CLUSTERING ON THE IMAGE FEATURES AND TRAIN A

LINEAR CLASSIFIER USING THE IMAGE LABELS. AS A REFERENCE, WE REPORT RESULTS USING AN IMAGENET-PRETRAINED RESNET-18.

CIFAR-10 CIFAR-100
K-means Linear K-means Linear

NMI ACC ACC NMI ACC ACC

ImageNet labels 0.321 0.407 0.782 0.247 0.281 0.646

NAT 0.044 ± .001 0.162 ± .001 0.315 ± .002 0.037 ± .001 0.095 ± .001 0.177 ± .001
RotNet 0.329 ± .011 0.349 ± .012 0.740 ± .002 0.261 ± .006 0.284 ± .013 0.543 ± .001
NAT+RotNet 0.413 ± .005 0.511 ± .002 0.764 ± .001 0.190 ± .007 0.232 ± .006 0.499 ± .002

Ours 0.428 ± .011 0.397 ± .018 0.869 ± .002 0.395 ± .002 0.347 ± .007 0.662 ± .001

TABLE V
COMPARISON OF CLUSTERING PERFORMANCE BEFORE AND AFTER THE REFINEMENT STAGE.

MNIST CIFAR-10 CIFAR-100 STL-10 ImageNet-10 Tiny-ImageNet
NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

Before avg. 0.950 0.981 0.703 0.820 0.418 0.446 0.593 0.694 0.719 0.811 0.274 0.119
ste ±.002 ±.001 ±.011 ±.019 ±.003 ±.006 ±.005 ±.013 ±.008 ±.012 ±.001 ±.001

After avg. 0.971 0.990 0.715 0.829 0.422 0.446 0.596 0.696 0.725 0.815 0.254 0.095
ste ±.000 ±.000 ±.009 ±.021 ±.002 ±.005 ±.005 ±.013 ±.008 ±.012 ±.001 ±.002

indeed improves clustering performance as seen in Table III.
In contrast, when training with an auxiliary task and adding
the rotation loss, pre-processing with the Sobel filter degrades
the algorithms performance. Furthermore, without the rotation
loss the learning rate has to be reduced to 0.01 for training to
converge. The reason may be that trivial cues such as color
are not beneficial for the task of predicting image rotations,
and therefore the auxiliary task forces the ConvNet to learn
features that focus on the object in the image. Once the focus
is on the object, additional cues such as color can be beneficial
for clustering, and as a result pre-processing with the Sobel
filter is detrimental to the algorithm’s performance.

Feature Evaluation. Our algorithm borrows some of its
ingredients from NAT and RotNet. However, while these two
methods address representation learning, the final goal of our
method is clustering. Nevertheless, we compare our method
to NAT and RotNet in two ways. First, we examine the
clustering capabilities of the methods by applying k-means
to the penultimate layer of the networks. Second, we evaluate
the learnt features by training a linear classifier with the image
labels on top of the frozen features of the networks. We use
the same architecture and image transformations as our model
for both methods. We follow the training procedure from [23]
for training RotNet and [3] for training NAT.

More specifically, we train the linear classifier with stochas-
tic gradient descent with learning rate 0.1, momentum of 0.9,
weight decay of 0.00001, batch size of 128, cosine annealing
for learning rate scheduling, and 100 training epochs. Results
with CIFAR-10 and CIFAR-100 are reported in Table IV. As
shown our method outperforms the others in all cases except

one, where NAT+RotNet performs better when clustering
CIFAR-10 image features. As a reference for the linear clas-
sifier performance, we also evaluate a model pretrained with
ImageNet (first row in Table IV). Note that we use the same
image augmentations as for training the unsupervised methods,
including 20×20 cropping, which may degrade performance
for this model.

Refinement stage. We compare clustering performance
with and without the proposed refinement stage in Table V.
MNIST is the only dataset with class imbalance, as its smallest
class has 6313 samples while its largest has 7877. Reassur-
ingly, the refinement stage helps the algorithm achieve near
perfect clustering with accuracy of 99.0%.

V. SUMMARY

For the task of unsupervised semantic image clustering, we
presented an end-to-end deep clustering framework, that trains
a ConvNet to align image embeddings with targets sampled
from a Gaussian Mixture Model by solving a linear assignment
problem using the Hungarian algorithm. To achieve effective
training, we incorporated an additional auxiliary task - the
prediction of image rotation. Our ablation study shows that the
contribution of this component is essential for the success of
the method. Even though the proposed method is quite simple,
it yields a significant improvement on previous state-of-the-art
methods on a variety of challenging benchmarks. Furthermore,
it is quite efficient and takes less time to train than previous
state-of-the-art methods.
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[17] Philip Häusser, Johannes Plapp, Vladimir Golkov, Elie Aljalbout, and
Daniel Cremers. Associative deep clustering: Training a classification
network with no labels. In German Conference on Pattern Recognition
(GCPR), 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 770–778,
2016.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Interna-
tional Conference on Machine Learning (ICML), 2015.

[20] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering:
a review. ACM computing surveys (CSUR), 31(3):264–323, 1999.

[21] Xu Ji, João F Henriques, and Andrea Vedaldi. Invariant information
clustering for unsupervised image classification and segmentation. In
IEEE/CVF International Conference on Computer Vision (ICCV), pages
9865–9874, 2019.

[22] Diederik Kingma and Max Welling. Auto-encoding variational bayes.
In International Conference on Learning Representations (ICLR), 2014.

[23] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-
supervised visual representation learning. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.
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