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Abstract—The field of Movement Ecology is experiencing a
period of rapid growth in availability of data, and like many
other fields is turning to data science for tools and methods to
cope with the new challenges and opportunities that this presents.
One rich and interesting source of data is the bio-logger. These
small electronic devices are attached to animals free to roam in
their natural habitats, and report back readings from multiple
sensors, including GPS and accelerometer bursts. A common use
of this accelerometer data is for supervised learning of behavioral
modes. However, there is a need for unsupervised analysis tools as
well, due to the inherent difficulties of obtaining a labeled dataset,
which in some cases is either infeasible or does not successfully
encompass the full repertoire of behavioral modes of interest.
Here we present a matrix factorization based clustering method
that allows either a soft or a hard partitioning of acceleration
measurements, as well as a straight-forward way of drawing
insight into the complex movements themselves. The method is
validated by comparing the partitions with a labeled dataset,
and is further compared to standard methods highlighting the
advantages of the new method.

I. INTRODUCTION

The aim of the field of Movement ecology is to unify
research of movement of organisms and aid in the development
of a general theory of whole-organism movement [1]. Recent
technological advances in tracking tools and especially the
appearance of cheap and small GPS devices [2], have driven
the field into a period of rapid growth in knowledge and
insight [3], and have led to the emergence of various methods
of analyzing movement patterns [4]. These advances have
motivated the development of integrative conceptual frame-
works unifying cognitive, biomechanical, randomality and
optimality paradigms to study movements of all kinds by all
types of organisms [1]. Nevertheless, movement data, however
accurate, is unlikely to suffice for inference on the links be-
tween behavioral, ecological, physiological, and evolutionary
processes driving the movement of individuals, and link these
subjects which have traditionally been researched separately
in their respective fields. Thus, promoting movement ecology
research and the desirable unification across species and move-
ment phenomena requires the development of additional data
sources: sensors and tools providing simultaneous information
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about the movement, energy expenditure and behavior of the
focal organisms, together with the environmental conditions
they encounter en route [5].

One such tool, which has been introduced into the field
of movement ecology, is the accelerometer-biologger (ACC).
These sensors allow the determination of the acceleration
of the tagged animal’s body, and are used as a means of
identifying moment-to-moment behavioral modes [6], and
estimating energy expenditure [7]. ACC loggers typically
record in 1-3 dimensions, either continuously or in short
bouts in a constant window [8]. Their output is used to
infer behavior most commonly through supervised machine
learning techniques, and energy expenditure using the Overall
Dynamic Body Acceleration (ODBA) or related metrics [9],
[7]. Combined with GPS recordings, acceleration sensors add
fine scale information on the variation in animal’s behavior
and energy expenditure in space and time (see [10] for a
recent review). ACC-based analysis has been used to compute
many measures of interest, including behavior-specific body
posture, movement and activity budgets, measures of foraging
effort, attempted food capture events, mortality detection,
classifying behavioral modes and more [10]. These measures
have facilitated movement-related research for a wide range
of topics in ecology and animal behavior [4], [10], [11], [12]
as well as other fields of research such as animal conservation
and welfare [11], [13] and biomechanics [14], [15].

In recent years there has been considerable interest in the
analysis of behavioral modes from ACC data using supervised
learning techniques. The protocol for using ACC data for
supervised learning of behavioral modes consists of several
steps. First, a calibration procedure is preformed in a con-
trolled environment. Before deployment, the response of each
tag to ±1G acceleration on each axis is recorded, in order
to fit the tag-specific linear transformation from the recorded
values (mV) to the desired units of acceleration. Next, the
calibrated tags are given a recording schedule and mounted
on the focal animals. The data is later retrieved either by RF
(radio) methods, or by physically reacquiring the device.

In order to train supervised machine learning models, a
labeled dataset is collected through field observations. This
time and labor intensive stage requires the researcher to



observe the animal, either in its natural habitat or in captivity,
and relate the actual behavioral modes to the time-stamp of
the ACC recordings. Since some behavioral modes tend to be
less common, or preformed predominantly at specific times,
recording a sufficient number of such behavior-measurement
samples may be tricky. Furthermore, for nocturnal species,
observations may not be feasible. In the final stage, models
are trained using the labeled data, and the entire dataset is
then labeled.

These methods have been applied to data from many
species, and for a diverse range of behavioral modes. However,
there are several drawbacks to the supervised approach. Ob-
servations, even if perfectly accurate, may not be adequately
representative of the behavioral pattern throughout the period
of the research (which is desirably the lifetime of the animal),
for several reasons: field work is inherently confined to a
specific time and place, only some of the animals are observed,
and the presence of the observer may in some cases have an
impact on the behavior of the observed animals. The very need
for observations limits the scope of such research projects
to observable species and thus to labs with the necessary
resources (both in money and manpower) to carry out all the
steps listed above.

In this paper we present a framework for unsupervised anal-
ysis of behavioral modes from ACC data. The rest of the paper
is structured as follows: The next section describes related
work both in Movement Ecology and in matrix factorization
for clustering. In section III we introduce the features and
model. Finally, section IV presents the results on a large real-
world dataset and comparison to other methods.

II. PREVIOUS WORK

Previous work on behavioral mode analysis from ACC
data focused predominantly on supervised learning, with an
emphasis on constructing useful features and finding the right
classifiers. While this line of work proved very successful,
both in terms of classifier performance and of scientific
discovery that it was able to drive, it still suffers from the
inherent limitations of supervised learning, compounded by
the very high cost of obtaining labeled data for behavioral
observations of wild animals. It remains the case that for some
animals (nocturnal or sea species for instance), obtaining a
labeled dataset is currently infeasible. Thus, in order to use all
available ACC data for behavioral mode analysis in the field of
Movement Ecology, an unsupervised framework is essential.

To the best of our knowledge, there has been only a single
published attempt at such a method [16] which essentially
applied K-means to the ACC data. We consider K-means as a
baseline to compare our method against (see Results section
below).

Matrix factorization has been studied extensively in the
context of clustering [17], [18] and connections have been
shown to various popular clustering algorithms such as K-
means and spectral clustering [19]. Our proposed method
is essentially soft assignment matrix factorization clustering,

together with a theoretical justification based on the combined
nature of the signals and features under consideration.

III. METHODOLOGY

A. Feature generation

The intuition behind the features of ACC signals that we
use here is that a behavioral mode is distinguishable by the
distribution of short-scale movements that it is comprised of.
Considering these movement primitives as word analogs, we
construct what is essentially a movement bag-of-words (m-
bow) representation - a histogram of movement type counts.
Since behavioral modes tend to have distinct time scales,
different from one-another, we construct histograms relating
to multiple scales in order to capture more of the relevant
information in the signal. The multiple time-scale histograms
are then concatenated to obtain one long feature vector per
input signal.

Since the signal is a continuous measurement, we do not
have direct access to the short-scale movement primitives that
exist in it. Hence, we define the notion of a patch. A patch of
width l of an ACC signal is any l consecutive measurements
in it. Thus, for a signal of length T there are T − l+1 distinct
patches of length l. Since these patches contain continuous-
values they tend to be distinct. Our aim is to discretize this
space in order to bin similar patches together and form a
compact representation of the count-values of similar patches.

In order to transform the raw signal into the feature vector,
we first need to construct a dictionary of movement primitives.
Association of patches to these primitives will then allow the
binning we use as the final feature vector. The dictionary is
generated for each scale separately, by applying K-Means to
the set of all patches of that scale in the data. Thus, our
movement primitives are the centroids of these short-scale
movements that exist in the signal. Following the terminology
for such features in Natural Language Processing and in Com-
puter Vision, we call these the patch codebook (Algorithm 1).
The resulting centroids are refereed to as patch words. Next,
for each ACC signal, the patches it contains for each scale
are extracted and assigned to the histogram bin of the nearest
patch word in the patch codebook. The final representation is
a concatenation of such histograms across scales (Algorithm
2).

B. Mixture property of patch features

In order to motivate the proposed model (next section), we
present the mixture property of patch features. We assume that
our signals have the property that a large enough part of a
sample from a certain behavioral mode will have distribution
of patches that is the same as the distribution in the entire
sample. The meaning of this assumption is that each behavioral
mode has a distribution of patches that characterizes it.

Intuitively, if a signal S is constructed by taking the first half
of a signal Sa and the second half of an equal length signal
Sb then the distribution of patches in S will be approximately
an equal parts mixture of those in Sa and in Sb. The reason
for this is that a patch in S is either (a) completely contained



Algorithm 1 Multiscale codebook generation
input:
{si}pi=1 the set of acceleration measurements
l1, .., lm the scales to use
k1, ..., km the size of each codebook
output:
m sets of centroids of sizes k1, ..., km and scales (dimension-
ality) l1, .., lm

for j = 1 to m
Si ← empty list
foreach ACC signal s in {si}pi=1

for t = 1 to s.Length− lj
add s[t : t+ lj ] to Si

end
end
Ci ← KMeans(Si; kj)

end
return C1, .., Cm

Algorithm 2 Multiscale codebook feature generation
input:
C1, ..., Cm the output of the codebook generation algorithm
(Algorithm 1)
l1, .., lm the scales used to build the codebook
s an ACC signal
output:
The representation of signal s

for j = 1 to m
S ← empty list
for t = 1 to s.Length− lj
add s[t : t+ lj ] to S

end
hj ← empty list
foreach patch p in S
add argmink′ dist(p, Cj [k

′]) to hj
end

end
return histogram(h1)|histogram(h2)|...|histogram(hm)

in Sa and will then be distributed like patches in Sa or (b)
completely in Sb and distributed like patches in Sb or (c) start
in Sa and continue into Sb, in which case we know little about
the distribution and consider these patches as noise. The key
point now is that the number of patches of type (c) is at most
twice the length of the patch, and thus can be made small in
relation to the total number of patches which is in the order
of the length of the signal. More formally:

Let S be an ACC signal composed of a concatenation
of t1 consecutive samples during behavioral mode a and
t2 consecutive samples during behavioral mode b. Denote
pmode(s) the probability of a patch s of length l in behavioral
mode mode ∈ {a, b}. Let s be a patch drawn uniformly from
S, then:

p(s) = Pr(A)p(s|A) + Pr(B)p(s|B) + Pr(C)p(s|C)

≥ Pr(A)pa(s) + Pr(B)pb(s)

=
t1 − l
t1 + t2

pa(s) +
t2 − l
t1 + t22

pb(s)

=
t1

t1 + t2
pa(s) +

t2
t1 + t2

pb(s)− ε

where events A,B,C denote the patch being all in S1, all in
S2 and starting in S1 and ending in S2 respectively, and:

ε =
l

t1 + t2
[pa(s) + pb(s)] (1)

ε can be made arbitrarily small by making t1+ t2 large with a
constant l, meaning that for patches small enough in relation
to the length of the entire signal, the distribution of patches of
the concatenated signal is a mixture of the distributions of the
parts, with mixing coefficients of the part lengths. We note that
this result can easily be extended to a concatenation of any
finite number of signals, as long as each one is of sufficient
length related to the patch width.

Since behaviors of real-world animals start and stop, and
a measured ACC signal is likely to be a concatenation of
signals representing different behavioral modes (typically 1-
3), the above property inspires a model that is able to capture
such mixtures in an explicit fashion. Furthermore, the resulting
mixture coefficients may provide some insight into the nature
of the underlying behaviors and the relationships between
them – which often appear alongside each other and which
are more temporally separated, for instance.

C. The proposed model

Let k denote the number of behavioral modes under con-
sideration, and p the dimension of the representation of ACC
observations. Following the mixture property presented in the
previous section, we assume that every sample is a convex
combination of the representation of a “pure” signal of the
various behavioral modes. Further, we assume the existence
of a matrix F ∈ Rpk The factor matrix, such that the i− th
column of F is the representation of a pure signal of the i−th
behavioral mode, which we will call the factor associated with
the i− th behavioral mode. Let s be an ACC sample, then:

s = Fα+ ε (2)

where ε is some random vector of the appropriate dimensions.
In other words, we say that the sample s is a linear com-
bination of the factors associated with each of the behavioral
modes with some remainder term. For the full dataset, we then
have:

S = FA+ ε (3)



where F is the same matrix, A′s columns are the factor
loadings for each of the samples denoted α in 2, and ε is
a random matrix of the appropriate dimensions. Since our
features are non-negative histograms, and we would like the
factor loadings to be non-negative (The reason we constrain
the factor loadings to be non-negative is that we would like
to interpret these values as the extend to which the signal is
associated to the behavioral modes, and as such these should
naturally be non-negative numbers), we constrain the matrices
F,A to have non-negative values. We solve for F,A using a
least squares criterion:

F,A = argmin‖FA− S‖F s.t. Fi,j , Ai,j ≥ 0 ∀i, j (4)

which can be solved, for instance, using alternating non-
negative least squares (Algorithm 3) [17], or projected gradient
methods [20].

Algorithm 3 alternating non-negative least squares
input:
S ∈ RpN the matrix containing the representations of N ACC
samples
output:
A factorization F ∈ Rpk, A ∈ RkN of S such that S ≈ FA

F, A← random initialization
repeat until convergence
F ← minF ‖FA− S||2F s.t. Fi,j ≥ 0 ∀i, j
A← minA‖FA− S||2F s.t. Ai,j ≥ 0 ∀i, j

end
return F,A

IV. RESULTS

In this section we present experiments designed to compare
our method to alternatives, and derive insights about the data.
The results are then discussed in the next section.

Data for these experiments consists of 3D acceleration
measurements from bio-loggers which were recorded during
2012. Each measurement consists of 4 seconds at 10Hz per
axis, giving a total of 120 values. A ground truth partition-
ing of the data was obtained using 3815 field observations
each of which was assigned one of 5 distinct behavioral
modes (Walking, Standing, Sitting, Flapping, Gliding). The
labeling was extending to the entire dataset using standard
supervised machine learning methods (see [8], [5] for more
details regarding the methodology, and an open-access web-
app specializing in supervised learning for movement data
of this sort). Experiments were conducted using stratified
sampling of 100, 000 measurements (20, 000 per behavioral
mode).

Matrix factorization was preformed using the scikit-learn
[21] python software library (see [20] for method details).
In all experiments the results were stable across repetitions,
leading to essentially zero standard deviation, and therefor the
reported results correspond to single repetitions.

Our method is compared to the following:
(a) Random partitioning - each sample is assigned a value

drawn uniformly from the set of possible partitions {1, 2, .., k},
hence we expect an 80% 0− 1 loss.

(b) Uniform partition - each sample is assigned the same
distribution of 1

k per partition, over the k partitions, again
leading to an expected 80% 0− 1 loss.

(c) Kmeans - the sample are partitioned using Kmeans.
(d) Gaussian Mixture Models (GMM) - The samples get

coefficients per partition, for each of the k partitions using a
GMM.
where (a) and (b) are used as controls, (c) and (d) are used as
representative hard and soft clustering methods, respectively.

The data is then divided into two equal parts designated as
train and test. Using the training-set we assign to each partition
the label (out of the 5 labels in the ground-truth data) that has
the highest weight in that partition. The score a sample s gets
for label l is the sum of the scores it got in the partitions
that were designated with label l. The following evaluation is
preformed on the test-set only. Resemblance to the ground-
truth is measured using log-loss (Figure 1) and 0 − 1 loss
(Figure 2). Table 1 shows mean label association using non-
negative matrix-factorization (NNMF) with k = 30. Data is
presented after row normalization to facilitate between-row
comparison.

Figure 1. Log loss of soft-assignment to each of the ground-truth classes
using each of the methods under consideration. (NNMF: non-negative matrix
factorization, GMM: Gaussian mixture model)

V. DISCUSSION

The most striking result of the experiments above is that
while the matrix-factorization method preforms well compared
to the other methods with respect to the log-loss metric (Figure
1), it is not quite as good with respect to the 0-1 loss (Figure
2). In order to better understand this phenomena, we take a
closer look at the data. Consider an observation where the
animal takes a single step during the 4-second acceleration
measurement window, and stands still for the rest of it. In
order not to underestimate the amount of walking, we label this
sample as Walking. From the mixture property of the features
we use (see Methodology section), when using the matrix
factorization approach we would expect to get a Walking factor



Table I
MEAN LABEL ASSOCIATION PER GROUND-TRUTH BEHAVIORAL MODE. NNMF WITH 30 FACTORS. NORMALIZED ROWS.

Ground truth / Assignment Flapping Gliding Walking Standing Sitting
Flapping 51.25% 13.66% 13.37% 4.33% 17.39%
Gliding 0.75% 49.98% 8.49% 3.95% 36.84%
Walking 2.41% 19.71% 43.92% 20.56% 13.41%
Standing 0.86% 13.30% 1.04% 74.93% 9.88%
Sitting 0.01% 30.88% 0.15% 10.46% 58.50%

Figure 2. 0-1 loss of hard-assignment to each of the ground-truth classes using
each of the methods under consideration. For the soft-assignment partitioning
methods, hard-assignment is achieved using argmax. (NNMF: non-negative
matrix factorization, GMM: Gaussian mixture model)

proportional to the time spent doing so in the measurement
windows. Thus, for a sample with some walking (say, less
than 50%) we get a miss in the 0-1 loss metric, but a better
score in the log-loss which is more sensitive to assignment of
very low probabilities to the correct class.

Table 1 sheds more light on the aforementioned result by
showing average assignment of factors for each of the ground-
truth classes. Flapping samples indeed received the highest
weight, on average, on Flapping factors (51.25%), but the
Gliding and Walking factors get over 13% each. This may be
due to the fact that Storks indeed glide between wing flaps, and
may have walked prior to taking off during the observations
which are inherently biased to behavior close to the ground
(where the observer is). This may also point to the tendency of
the field observers to assign the more active behavior to mixed
samples (In which case a sample where the bird flaps for a
part of the duration of the measurement would be assigned to
Flapping, in the same sense that a step or two would qualify
an otherwise stationary sample as Walking). We note that the
Sitting factors received factor weights higher than expected in
all other behavioral modes, meaning there might be a need for
a column normalization. We defer this to future research.

VI. CONCLUSIONS

In this paper we describe a matrix factorization approach
to behavioral mode analysis from accelerometer data and
demonstrate it’s qualities using a large Movement Ecology
dataset. While clustering with matrix factorization is by no
means a new idea, the novelty here is in the integration with

patch features that theoretically motivate the method in the
context of time-series sensor readings for behavioral mode
analysis.

The main contribution of this paper is in presenting a
framework that will allow for a widespread use of behavioral
mode analysis in Movement Ecology, and related fields where
determining movement patterns from remote sensor readings is
necessary. Further, we introduce the multiscale patch features
that may be applicable for many continuous sensor readings,
and show that a linear mixture model is justified when using
such features.

One issue we did not address in this paper is the scenario
of multiple sensor readings. This is of particular interest since
most devices produce readings from more than one type
of sensor (ex. Gyroscopes and Magnometers). One possible
direction for future work would be to develop a framework
for integrating readings from multiple sensors and jointly
clustering the readings into behavioral mode partitions. This
can be done, for instance, using separate factor matrices:
F1, ..., Fk for k sensor types, and a single shared factor
loading matrix A. Denoting the features matrices S1, ..., Sk

we now look for matrices A,F1, ..., Fk such that Si ≈ FiA
for i = 1, ..., k.
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