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Abstract

Many learning algorithms use a metric defined over the inpate as a principal tool, and
their performance critically depends on the quality of thistric. We address the problem of
learning metrics using side-information in the form of eglénce constraints. Unlike labels, we
demonstrate that this type of side-information can sonegiime automatically obtained without
the need of human intervention. We show how such side-irdtion can be used to modify the
representation of the data, leading to improved clusteaimtjclassification.

Specifically, we present the Relevant Component Analys&A(Ralgorithm, which is a simple
and efficient algorithm for learning a Mahalanobis metrice #how that RCA is the solution of
an interesting optimization problem, founded on an infdiomatheoretic basis. If dimensionality
reduction is allowed within RCA, we show that it is optimadlgcomplished by a version of Fisher’s
linear discriminant that uses constraints. Moreover, ugdgain Gaussian assumptions, RCA can
be viewed as a Maximum Likelihood estimation of the withiasd covariance matrix. We conclude
with extensive empirical evaluations of RCA, showing itsaatage over alternative methods.

Keywords: clustering, metric learning, dimensionality reductiogu&alence constraints, side
information.

1. Introduction

A number of learning problems, such as clustering and nearest neiglabsification, rely on some
a priori defined distance function over the input space. It is often the ttaat selecting a “good”
metric critically affects the algorithms’ performance. In this paper, motivayeithé wish to boost
the performance of these algorithms, we study ways to learn a “good” msinig side information.
One difficulty in finding a “good” metric is that its quality may be context depahdd-or
example, consider an image-retrieval application which includes many fatéges. Given a
guery image, the application retrieves the most similar faces in the databasdiagdo some
pre-determined metric. However, when presenting the query image we niatgiested in retriev-
ing other images of the same person, or we may want to retrieve other fébethevsame facial
expression. It seems difficult for a pre-determined metric to be suitabtefosuch different tasks.
In order to learn a context dependent metric, the data set must be audrbgstame additional
information, or side-information, relevant to the task at hand. For examelenay have access
to the labels opart of the data set. In this paper we focus on another type of side-information,
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in which equivalence constraintsetween a few of the data points are provided. More specifically
we assume knowledge about small groups of data points that are knowgitate from the same
class, although their label is unknown. We term these small groups of poimisklets”.

A key observation is that in contrast to explicit labels that are usually pedvity a human
instructor, in many unsupervised learning tasks equivalence consiraagtbe extracted with min-
imal effort or even automatically. One example is when the data is inherentigisgal and can be
modelled by a Markovian process. Consider for example movie segmentatiere the objective is
to find all the frames in which the same actor appears. Due to the continumue abmost movies,
faces extracted from successive frames in roughly the same locatidre gssumed to come from
the same person. This is true as long as there is no scene change, whio rcdoustly detected
(Boreczky and Rowe, 1996). Another analogous example is speadperesitation and recognition,
in which the conversation between several speakers needs to be $edj@ugh clustered according
to speaker identity. Here, it may be possible to automatically identify small segmiespeech
which are likely to contain data points from a single yaknownspeaker.

A different scenario, in which equivalence constraints are the nasorake of training data,
occurs when we wish to learn from several teachers who do not kaolv @her and who are not
able to coordinate among themselves the use of common labels. We call thissadisaibuted
learning’! For example, assume that you are given a large database of facial ioiag@sy people,
which cannot be labelled by a small number of teachers due to its vast bieeatlabase is therefore
divided (arbitrarily) intoP parts (whereP is very large), which are then given ®teachers to
annotate. The labels provided by the different teachers may be inconsetdémages of the same
person appear in more than one part of the database, they are likely teebed@ferent names.
Coordinating the labels of the different teachers is almost as dauntingediinglthe original data
set. However, equivalence constraints can be easily extracted, simte which were given the
same tag by a certain teacher are known to originate from the same class.

In this paper we study how to use equivalence constraints in order todeaoptimal Maha-
lanobis metric between data points. Equivalently, the problem can also bd as$earning a good
representation function, transforming the data representation by theesgoaof the Mahalanobis
weight matrix. Therefore we shall discuss the two problems interchalygeab

In Section 2 we describe the proposed method-the Relevant Comporedgsi8{fRCA) algo-
rithm. Although some of the interesting results can only be proven using expacissian assump-
tions, the optimality of RCA can be shown with some relatively weak assumptiestsicting the
discussion to linear transformations and the Euclidean norm. Specificallgctio8 3 we describe a
novel information theoretic criterion and show that RCA is its optimal solutioBalfissian assump-
tions are added the result can be extended to the case where dimensiedalitijan is permitted,
and the optimal solution now includes Fisher’s linear discriminant (Fukyr@f0) as an inter-
mediate step. In Section 4 we show that RCA is also the optimal solution to angtiraization
problem, seeking to minimize within class distances. Viewed this way, RCA is diicmtipared to
another recent algorithm for learning Mahalanobis distance from algumige constraints, proposed
by Xing et al. (2002). In Section 5 we show that under Gaussian assuraRiGA can be inter-
preted as the maximum-likelihood (ML) estimator of the within class covariance matiexalso
provide a bound over the variance of this estimator, showing that it is attmicst the variance of
the ML estimator obtained using the fully labelled data.

1. A related scenario (which we call ‘generalized relevance feedbhadkere users of a retrieval engine are asked to
annotate the retrieved set of data points, has similar properties.
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The successful application of RCA in high dimensional spaces requmendionality reduc-
tion, whose details are discussed in Section 6. An online version of the ROAtam is presented
in Section 7. In Section 8 we describe extensive empirical evaluations &G@#ealgorithm. We
focus on two tasks—data retrieval and clustering, and use three typatofa) A data set of frontal
faces (Belhumeur et al., 1997); this example shows that RCA with partialadgnce constraints
typically yields comparable results to supervised algorithms which use fulljidateaining data.
(b) A large data set of images collected by a real-time surveillance applicatiwmre the equiva-
lence constraints are gathered automatically. (c) Several data sets gdoCthrepository, which
are used to compare between RCA and other competing methods that wsdesmpai constraints.

1.1 Related Work

There has been much work on learning representations and distamt®rfisnin the supervised
learning settings, and we can only briefly mention a few examples. Hastieilsiirani (1996)
and Jaakkola and Haussler (1998) use labelled data to learn good matiitaskification. Thrun
(1996) learns a distance function (or a representation function) fesi€ilzation using a “leaning-to-
learn” paradigm. In this setting several related classification tasks aneteasing several labelled
data sets, and algorithms are proposed which learn representationstandeal functions in a way
that allows for the transfer of knowledge between the tasks. In the wofisbby et al. (1999)
the joint distribution of two random variableé andZ is assumed to be known, and one seeks a
compact representation ¥fwhich bears high relevance 2o This work, which is further developed

in Chechik and Tishby (2003), can be viewed as supervised repa¢is@riearning.

As mentioned, RCA can be justified using information theoretic criteria on théané, and
as an ML estimator under Gaussian assumptions on the other. Informatioptit@oiteria for
unsupervised learning in neural networks were studied by Linsk&9{18and have been used since
in several tasks in the neural network literature. Important examplesererganizing neural
networks (Becker and Hinton, 1992) and Independent Componealy#ia (Bell and Sejnowski,
1995)). Viewed as a Gaussian technique, RCA is related to a large famibatfré extraction
techniques that rely on second order statistics. This family includes, antbagsothe techniques
of Partial Least-Squares (PLS) (Geladi and Kowalski, 1986), Gaab@orrelation Analysis (CCA)
(Thompson, 1984) and Fisher’s Linear Discriminant (FLD) (Fukunag80). All these techniques
extract linear projections of a random varialdewhich are relevant to the prediction of another
variableZ in various settings. However, PLS and CCA are designed for regretssks, in which
Z is a continuous variable, while FLD is used for classification tasks in whishdiscrete. Thus,
RCA is more closely related to FLD, as theoretically established in Section 3.3en#irical
investigation is offered in Section 8.1.3, in which we show that RCA can be tesenhance the
performance of FLD in the fully supervised scenario.

In recent years some work has been done on using equivalendeagaissas side information.
Both positive (‘ais similar to b’) and negative (‘a is dissimilar from b’) e@lénce constraints were
considered. Several authors considered the problem of semi-g@gubclustering using equivalence
constraints. More specifically, positive and negative constraints wealirced into the complete
linkage algorithm (Klein et al., 2002), the K-means algorithm (Wagstaff e2@801) and the EM
of a Gaussian mixture model (Shental et al., 2004). A second line ofrodsda which this work
belongs, focuses on learning a ‘good’ metric using equivalence edmstr Learning a Mahalanobis
metric from both positive and negative constraints was addressed in tkeoféing et al. (2002),
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presenting an algorithm which uses gradient ascent and iterative fiwogto solve a convex non
linear optimization problem. We compare this optimization problem to the one solvB€Byin
Section 4, and empirically compare the performance of the two algorithms in S&ctiche initial
description of RCA was given in the context of image retrieval (Shental. e2002), followed by
the work of Bar-Hillel et al. (2003). Recently Bilenko et al. (2004) segtgd a K-means based clus-
tering algorithm that also combines metric learning. The algorithm uses bative@sd negative
constraints and learns a single or multiple Mahalanobis metrics.

2. Relevant Component Analysis: The Algorithm

Relevant Component Analysis (RCA) is a method that seeks to identify and-gcale global
unwanted variability within the data. The method changes the feature spaddangiata repre-
sentation, by a global linear transformation which assigns large weightglevant dimensions”
and low weights to “irrelevant dimensions” (see Tenenbaum and Freei®@0).2These “relevant
dimensions” are estimated usiounkletsthat is, small subsets of points that are known to belong
to the same althouglnknowrclass. The algorithm is presented below as Algorithm 1 (Matlab code
can be downloaded from the authors’ sites).

Algorithm 1 The RCA algorithm
Given a data seX = {x }, andn chunkletsC; = {x; };"; j=1...n, do

1. Compute the within chunklet covariance matrix (Figure 1d)

:.’

Z||—\

Z (xji — mj) (xji —m;)t, (1)

wherem; denotes the mean of the j'th chunklet.

2. If needed, apply dimensionality reduction to the data uSiag described in Algorithm 2 (see
Section 6).

3. Compute the whitening transformation associated @ithV = (o (Figure 1e), and apply
it to the data pointsX,ew = W X (Figure 1f), whereX refers to the data points after dimen-
sionality reduction when applicable. Alternatively, use the inversé iof the Mahalanobis
distanced(x1,%2) = (X1 — %2)!1C (%1 — X2).

More specifically, pointx; andx, are said to be related by a positive constraint if it is known
that both points share the same (unknown) label. If pokatand x, are related by a positive
constraint, and, andxs are also related by a positive constraint, then a chunkdgtx,xs} is
formed. Generally, chunklets are formed by applying transitive clostgetbe whole set of positive
equivalence constraints.

The RCA transformation is intended to reduce clutter, so that in the newdesgiace, the inher-
ent structure of the data can be more easily unravelled (see illustrationsuire Rigr-f). To this end,
the algorithm estimates the within class covariance of theaata|Z) whereX andZ describe the
data points and their labels respectively. The estimation is based on pogitivalence constraints
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only, and does not use any explicit label information. In high dimensioai@, dhe estimated ma-
trix can be used for semi-supervised dimensionality reduction. AfterwHrdslata set is whitened
with respect to the estimated within class covariance matrix. The whiteningdraregfonW (in
Step 3 of Algorithm 1) assigns lower weights to directions of large variabilitgesthis variability
is mainly due to within class changes and is therefore “irrelevant” for thedfslassification.

(@) (b) (©)
(d) (e) (M)

Figure 1: An illustrative example of the RCA algorithm applied to synthetic Gansata. (a)
The fully labelled data set with 3 classes. (b) Same data unlabelled; cleadiatizes’
structure is less evident. (c) The set of chunklets that are provided RGRealgorithm
(points that share the same color and marker type form a chunklet). &xditered
chunklets, and their empirical covariance. (e) The whitening transformapplied to
the chunklets. (f) The original data after applying the RCA transformation.

The theoretical justifications for the RCA algorithm are given in SectionsI8-the following
discussion, the term ‘RCA refers to the algorithm either with or without direradity reduction
(optional Step 2). Usually the exact meaning can be readily understooohtext. When we
specifically discuss issues regarding the use of dimensionality reduct@®omay use the explicit
terms ‘RCA with (or without) dimensionality reduction’.

RCA does not use negative equivalence constraints. While negatigéramts clearly contain
useful information, they are less informative than positive constrainesdgenting argument be-
low). They are also much harder to use computationally, due partly to théhftainlike positive
constraints, negative constraints are not transitive. In our caseaieincorporation of negative
constraints leads to a matrix solution which is the difference of two positivaiteefnatrices, and
as a results does not necessarily produce a legitimate Mahalanobis metalteative approach,
which modifies the optimization function to incorporate negative constraintseaksfar example by
Xing et al. (2002), leads to a non-linear optimization problem with the ussak#sed drawbacks
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of increased computational load and some uncertainty about the optimalityfofahsolution? In
contrast, RCA is the closed form solution of several interesting optimizatiminigmn, whose com-
putation is no more complex than a single matrix inversion. Thus, in the tradetefebn runtime
efficiency and asymptotic performance, RCA chooses the former ancegtior information given
by negative equivalence constraints.

There is some evidence supporting the view that positive constraints aeemmnmative than
negative constraints. Firstly, a simple counting argument shows that gosdistraints exclude
more labelling possibilities than negative constraints. If for example thertackasses in the
data, two data points havé? possible label combinations. A positive constraint between the points
reduces this number gl combinations, while a negative constraint gives a much more moderate
reduction toM(M — 1) combinations. (This argument can be made formal in information theoretic
terms.) Secondly, empirical evidence from clustering algorithms which ubeyges of constraints
shows that in most cases positive constraints give a much higher perfoergain (Shental et al.,
2004; Wagstaff et al., 2001). Finally, in most cases in which equivaleanstraints are gathered
automatically, only positive constraints can be gathered.

Step 2 of the RCA algorithm applies dimensionality reduction to the data if nedddugh
dimensional spaces dimensionality reduction is almost always essentiat femdhess of the algo-
rithm, because the whitening transformation essentially re-scales the variabditydirections so
as to equalize them. Consequently, dimensions with small total variability cauabilitg and, in
the zero limit, singularity.

As discussed in Section 6, the optimal dimensionality reduction often starts withigzd Com-
ponent Analysis (PCA). PCA may appear contradictory to RCA, since it editegprincipal dimen-
sions with small variability, while RCA emphasizes principal dimensions with smaithlity.
One should note, however, that the principal dimensions are computedéredif spaces. The
dimensions eliminated by PCA have small variability in the original data spacee§panding to
CovX)), while the dimensions emphasized by RCA have low variability in a space velzete
point is translated according to the centroid of its own chunklet (correipg toCovX|2)). As a
result, the method ideally emphasizes those dimensions with large total vatiabhsepall within
class variance.

3. Information M aximization with Chunklet Constraints

How can we use chunklets to find a transformation of the data which improvespressentation?
In Section 3.1 we state the problem for general families of transformationdistashces, present-
ing an information theoretic formulation. In Section 3.2 we restrict the family oisfiaimation to
non-singular linear maps, and use the Euclidean metric to measure dist@heagptimal solution
is then given by RCA. In Section 3.3 we widen the family of permitted transformatio include
non-invertible linear transformations. We show that for normally distributad ®CA is the opti-
mal transformation when its dimensionality reduction is obtained with a constraistsib-isher's
Linear Discriminant (FLD).

2. Despite the problem’s convexity, the proposed gradient basedthilgareeds tuning of several parameters, and is
not guaranteed to find the optimum without such tuning. See Section 8rIr&dvant empirical results.
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3.1 An Information Theoretic Perspective

Following Linsker (1989), an information theoretic criterion states that &amaptransformation of
the inputX into its new representatioyi, should seek to maximize the mutual informatigix,Y)
betweerX andY under suitable constraints. In the general case X sefx;} of data points ing P
is transformed into the st = {f(x)} of points in®R K. We seek a deterministic functiohe F
that maximizes (X,Y), whereF is the family of permitted transformation functions (a “hypotheses
family”).

First, note that sincd is deterministic, maximizind (X,Y) is achieved by maximizing the
entropyH (Y) alone. To see this, recall that by definition

1(X,Y) =H(Y) = H(Y|X)

whereH(Y) andH(Y|X) are differential entropies, & andY are continuous random variables.
Sincef is deterministic, the uncertainty concernivigvhenX is known is minimal, thugd (Y|X)
achieves its lowest possible value-ab.® However, as noted by Bell and Sejnowski (1995)Y |X)
does not depend ohand is constant for every finite quantization scale. Hence maximizXgy)
with respect tof can be done by considering only the first tesy).

Second, note also thhit(Y) can be increased by simply ‘stretching’ the data space. For example,
if Y = f(X) for an invertible continuous function, we can incre&s@’) simply by choosingr =
Af(X) for any A > 1. In order to avoid the trivial solutioh — c, we can limit the distances
between points contained in a single chunklet . This can be done by doimgjréhe average
distance between a point in a chunklet and the chunklet’s mean. Hencgtittnézation problem is

n nj

1
maxH (Y) st N;;Hyji—m,yllék 2)

where{y;; }T:’lfi”:l denote the set of points imchunklets after the transformatiamv}j’ denotes the
mean of chunklef after the transformation, andis a constant.

3.2 RCA: The Optimal Linear Transformation for the Euclidean Norm

Consider the general problem (2) for the famiyof invertible linear transformations, and using
the squared Euclidean norm to measure distances. Sieénvertible, the connection between

the densities o¥ = f(X) andX is expressed by, (y) = BX(%)‘, where|J(x)| is the Jacobian of the
transformation. Fronpy(y)dy = px(x)dx, it follows thatH(Y) andH (X) are related as follows:

pP(x)
3(¥)|

H(Y) = - [ py)logp(y)dy=— | p0)log: T dx=H(X)+ (Iog3(x)
y X

For the linear magy = AX the Jacobian is constant and equdls and it is the only term in
H(Y) that depends on the transformatidnHence Problem (2) is reduced to

n nj

1 2
mpHoglAl st g3 5 i <k

3. This non-intuitive divergence is a result of the generalization of in&dion theory to continuous variables, that is,
the result of ignoring the discretization constant in the definition of diffé@bantropy.
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Multiplying a solution matrixA by A > 1 increases both tHeg|A| argument and the constrained
sum of within chunklet distances. Hence the maximum is achieved at the &guoitthe feasible
region, and the constraint becomes an equality. The constanty determines the scale of the
solution matrix, and is not important in most clustering and classification tagkshwessentially
rely on relative distances. Hence we cankset 1 and solve

n nj

1 2
maxlog|A|  st. N;;Hyu—m,yllz—l. (3)

Let B= A'A; sinceB is positive definite and logh| = 1 log|B|, Problem (3) can be rewritten as

n nj

1
maxliog|B| st. — Xi —mi||d =1 4
na g/B| N;;” ji 1B ) (4)

where||.||g denotes the Mahalanobis distance with weight matix he equivalence between the
problems is valid since for ar§§ - O there is arA such thaB = A'A, and so a solution to (4) gives
us a solution to (3) (and vice versa).

The optimization problem (4) can be solved easily, since the constraint ig liméa The
solution isB = %C—l, whereC is the average chunklet covariance matrix (1) &nis the dimen-
sionality of the data space. This solution is identical to the Mahalanobis matrixuterbp RCA
up to a global scale factor, or in other words, RCA is a scaled solution) of (4

3.3 Dimensionality Reduction

We now solve the optimization problem (4) for the family of general linear foainsations, that is,

Y = AX whereA € My «p andK < D. In order to obtain workable analytic expressions, we assume
that the distribution oKX is a multivariate Gaussian, from which it follows thais also Gaussian
with the entropy

D 1 D 1
H(Y) = §|0921Te+§|09|2y|ZEIOQZr[e+§|0g\AZXAt|.

Following the same reasoning as in Section 3.2 we replace the inequality witlitygod letk = 1.
Hence the optimization problem becomes

n nj

1 2
m/?xlog\AZXAty st. N,;i;”xji —mj||aa=1 (5)

For a given target dimensionalitg, the solution of the problem is Fisher linear discriminant
(FLD),* followed by the whitening of the within chunklet covariance in the reducedepA sketch
of the proof is given in Appendix A. The optimal RCA procedure therefacludes dimensionality
reduction. Since the FLD transformation is computed based on the estimated atitimklet co-
variance matrix, it is essentially a semi-supervised technique, as desitriBedtion 6. Note that
after the FLD step, the within class covariance matrix in the reduced spaeeigsaliagonal, and
Step 3 of RCA amounts to the scaling of each dimension separately.

4. Fisher Linear Discriminant is a linear projectiérfrom ®P to X with K < D, which maximizes the determinant

ratio max %ﬁr, whereS andS, denote the total covariance and the within class covariance respectively.
M,

Ac My «p
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4. RCA and the Minimization of Within Class Distances

In order to gain some intuition about the solution provided by the information maximizcrite-
rion (2), let us look at the optimization problem obtained by reversing the adlthe maximization
term and the constraint term in problem (4):

n nj

1 5
min - JZMZLHXH —-mj||g st [B|>1 (6)

We interpret problem (6) as follows: a Mahalanobis distaBds sought, which minimizes
the sum of all within chunklet squared distances, wkile> 1 prevents the solution from being
achieved by “shrinking” the entire space. Using the Kuhn-Tucker #rapwe can reduce (6) to

n nj

i S omill2 —
mBlngli;ij. mj||g —Alog|B| st. A>0, Alog|B|=0. (7)

Differentiating this Lagrangian shows that the minimum is giverBby ]é\%éfl, whereC is the
average chunklet covariance matrix. Once again, the solution is identite Mahalanobis matrix
in RCA up to a scale factor.

It is interesting, in this respect, to compare RCA with the method proposedtheby Xing
et al. (2002). They consider the related problem of learning a Mahakditiance using side
information in the form of pairwise constraints (Chunklets of siz@ are not considered). It is
assumed that in addition to the set of positive constra@iatsone is also given access to a set of
negative constraint®y—a set of pairs of points known to be dissimilar. Given these sets, they pose
the following optimization problem:

min Yy %1 — X2||3 st. Y [x-xlg>1 BxO (8)
B (x1,%2)€Qp (X1,%2) EQN

This problem is then solved using gradient ascent and iterative projengthods.

In order to allow a clear comparison of RCA with (8), we reformulate theraggu of (6) using
only within chunklet pairwise distances. For each paintn chunkletj we have

nj n

Xji =M =Xji = o kzlxjk = kzl(xji —Xjk).

Problem (6) can now be rewritten as
I L R )
mEgnNZQ_ZlHZ(in—Xjk)HB st. [B[>1. (9)
=1 0=
When only chunklets of size 2 are given, as in the case studied by Xing(2082), (9) reduces to

10 )
ménmglule—szHB st. [B|> 1. (10)

Clearly the minimization terms in problems (10) and (8) are identical up to a ccbr(ﬁ@n
The difference between the two problems lies in the constraint term: the aimmgiroposed by
Xing et al. (2002) uses pairs of dissimilar points, whereas the constraiheiRCA formulation
affects global scaling so that the ‘volume’ of the Mahalanobis neighlmarinot allowed to shrink
indefinitely. As a result Xing et al. (2002) are faced with a much hardémagation problem,
resulting in a slower and less stable algorithm.
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5. RCA and Maximum Likelihood: The Effect of Chunklet Size

We now consider the case where the data consists of several normaligutiéstrclasses sharing
the same covariance matrix. Under the assumption that the chunklets are daipland that
points within each chunklet are also sampled i.i.d., the likelihood of the chuniistgbution can
be written as

n nj 1
—EXp(fl(X-i—m-)‘Z*l(x-i—m-)).
DIiEl(ZTT)%|Z|% 2\ i ] ]

Writing the log-likelihood while neglecting constant terms and dendBirg> 1, we obtain

n Nnj

N Z\Ixji—mjllé—Nlongl, (11)
j=1li=

whereN is the total number of points in chunklets. Maximizing the log-likelihood is equntale
to minimizing (11), whose minimum is obtained whBrequals the RCA Mahalanobis matrix (1).
Note, moreover, that (11) is rather similar to the Lagrangian in (7), wherédlgrange multiplier
is replaced by the constalt Hence, under Gaussian assumptions, the solution of Problem (7) is
probabilistically justified by a maximum likelihood formulation.

Under Gaussian assumptions, we can further definmnaiasedversion of the RCA estimator.
Assume for simplicity that there amé constrained data points divided intochunklets of sizek
each. ThainbiasedRrCA estimator can be written as

2 le 1 K .
C(n, )ZHJZlmi;(in —my)(Xji —mi)’,

whereé(n,k) denotes the empirical mean of the covariance estimators produced byhesudtet.
It is shown in Appendix B that the variance of the eleménfof the estimating matrix is bounded

by

A 1 A
Var(Gij(n,k)) < (1+ m)Var(Cij (1,nk)), (12)
whereéij (1,nk) is the estimator when all thé = nk points are known to belong to the same class,
thus forming the best estimate possible frbhpoints. This bound shows that the variance of the
RCA estimator rapidly converges to the variance of the best estimator, @vehunklets of small
size. For the smallest possible chunklets, of size 2, the variance is onlydawicigh as the best
possible.

6. Dimensionality Reduction

As noted in Section 2, RCA may include dimensionality reduction. We now turndceasd this
issue in detail. Step 3 of the RCA algorithm decreases the weight of prindigadtions along
which the within class covariance matrix is relatively high, and increases eightvof directions
along which it is low. This intuition can be made precise in the following sense:

Denote by{A\'}P , the eigenvalues of the within class covariance matrix, and consider the
squared distance between two points from the same [tlassx,||?. We can diagonalize the within
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class covariance matrix using an orthonormal transformation which daehange the distance.
Therefore, let us assume without loss of generality that the covarianci maliagonal.

Before whitening, the average squared distandg|fis; — Xo||?] = 22'1-3:1)\1' and the average
squared distance in directidns E[(X; —x,)2] = 2\'. After whitening these values becomb and
2, respectively. Let us define the weight of dimensioN(i) € [0,1], as

L E[(X, —%5)?]
W = Ellh el

Now the ratio between the weight of each dimension before and after wigtengiven by

VVbefore(i) )\i
N i 13
Water(i) 150 A (13)

In Equation (13) we observe that the weight of each principal dimensmrases if its initial
within class variance was lower than the average, and vice versa. Wéenishhigh irrelevant
noise along several dimensions, the algorithm will indeed scale down niaiemsions. However,
when the irrelevant noise is scattered among many dimensions with low amplitugiehiofethem,
whitening will amplify these noisy dimensions, which is potentially harmful. Trereesfwhen the
data is initially embedded in a high dimensional space, the optional dimensiondiigtien in
RCA (Step 2) becomes mandatory.

We have seen in Section 3.3 that FLD is the dimensionality reduction techniguak wiaxi-
mizes the mutual information under Gaussian assumptions. Traditionally FLDniputed from
fully labelled training data, and the method therefore falls within superviseditep We now
extend FLD, using the same information theoretic criterion, to the case oflpargarvision in
the form of equivalence constraints. Specifically, denot&Sbgnd S, the estimators of the total
covariance and the within class covariance respectively. FLD maximizeeteaminant ratio

ASA'
max o2

—_— 14
Ac Mk xp ASA (14)

by solving a generalized eigenvector problem. The row vectors of the dptiatex A are the first

K eigenvectors 08§,'S. In our case the optimization problem is of the same form as in (14), with
the within chunklet covariance matrix from (1) playing the roleéspf We compute the projection
matrix using SVD in the usual way, and term this FLD variant cFLD (condsdiased FLD).

To understand the intuition behind cFLD, note that both PCA and cFLD remiorensions
with small total variance, and hence reduce the risk of RCA amplifying iragliegimensions with
small variance. However, unsupervised PCA may remove dimensionsréhahportant for the
discrimination between classes, if their total variability is low. Intuitively, betierethsionality
reduction can be obtained by comparing the total covariance matrix (usB€AY to the within
class covariance matrix (used by RCA), and this is exactly what the partigigrgised cFLD is
trying to accomplish in (14).

The cFLD dimensionality reduction can only be used if the rank of the withimidet covari-
ance matrix is higher than the dimensionality of the initial data space. If this comdibies not hold,
we use PCA to reduce the original data dimensionality as needed. Thelpreds summarized
below in Algorithm 2.
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Algorithm 2 Dimensionality reduction: Step 2 of RCA
Denote byD the original data dimensionality. Given a set of chunki@s}_; do

1. Compute the rank of the estimated within chunklet covariance mBteixy [_; (|Cj| — 1),
where|C;| denotes the size of the j'th chunklet.

2. If (D > R), apply PCA to reduce the data dimensionalityrf®, where O< a < 1 (to ensure
that cFLD provides stable results).

3. Compute the total covariance matrix estim&teand estimate the within class covariance
matrix usingSy = C from (1). Solve (14), and use the resultiAgo achieve the target data
dimensionality.

7. Online Implementation of RCA

The standard RCA algorithm presented in Section 2 is a batch algorithm wéscimas that all
the equivalence constraints are available at once, and that all the datapked from a stationary
source. Such conditions are usually not met in the case of biologicalrigasystems, or artificial
sensor systems that interact with a gradually changing environment. @ofmi@xample a system
that tries to cluster images of different people collected by a surveillameerean gradually chang-
ing illumination conditions, such as those caused by night and day chalmgéns case different
distance functions should be used during night and day times, and we il@uite distance used
by the system to gradually adapt to the current illumination conditions. An oaligithm for
distance function learning is required to achieve such a gradual adaptatio

Here we briefly present an online implementation of RCA, suitable for a haateork-like
architecture. In this implementation a weight mattke Mp.p, initiated randomly, is gradually
developed to become the RCA transformation matrix. In Algorithm 3 we préisemirocedure for
the simple case of chunklets of size 2. The extension of this algorithm toajeheinklets is briefly
described in Appendix C.

Algorithm 3 Online RCA for point pairs

Input: a stream of pairs of pointg] ,x} ), wherex] x} are known to belong to the same class.
Initialize W to a symmetric random matrix witf\W|| << 1.

At time step T do:

e receive paix! ,xJ;

o leth=x] —xJ;

e applyW toh, to gety=Wh

e updateN =W +n(W —yyW).

wheren > 0 determines the step size.

Assuming local stationarity, the steady state of this stochastic process frmbeby equating
the mean update to 0, where the expectation is taken over the next examlg paix; ). Using
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the notations of Algorithm 3, the resulting equation is
ENW—yyW)|=0 = E[l—yf]=I-WEhHW =0 = W =PE[hH] 2,

whereP is an orthonormal matriPP = |. The steady staté/ is the whitening transformation of
the correlation matrix oh. Sinceh = 2(x; — M), it is equivalent (up to the constant 2) to the
distance of a point from the center of its chunklet. The correlation mathistherefore equivalent
to the within chunklet covariance matrix. Thué converges to the RCA transformation of the
input population up to an orthonormal transformation. The resulting tremsttion is geometrically
equivalent to RCA, since the orthonormal transformafqureserves vector norms and angles.

In order to evaluate the stability of the online algorithm we conducted simulatibichwon-
firmed that the algorithm converges to the RCA estimator (up to the transforn®tibthe gradient
steps decrease with timg & no/T). However, the adaptation of the RCA estimator for such a step
size policy can be very slow. Keepimgconstant avoids this problem, at the cost of producing a
noisy RCA estimator, where the noise is proportionaltoHencen can be used to balance this
tradeoff between adaptation, speed and accuracy.

8. Experimental Results

The success of the RCA algorithm can be measured directly by measuigidposhood statistics,
or indirectly by measuring whether it improves clustering results. In the follpuve tested RCA
on three different applications using both direct and indirect evaluations

The RCA algorithm uses only partial information about the data labels. Inélsgect it is
interesting to compare its performance to unsupervised and superviseads&h data represen-
tation. Section 8.1 compares RCA to the unsupervised PCA and the fullyviguebi-LD on a
facial recognition task, using the YaleB data set (Belhumeur et al., 1987%his application of
face recognition, RCA appears very efficient in eliminating irrelevariatéity caused by varying
illumination. We also used this data set to test the effect of dimensionality redwting cFLD,
and the sensitivity of RCA to average chunklet size and the total amouwirtspn chunklets.

Section 8.2 presents a more realistic surveillance application in which equiead®nstraints
are gathered automatically from a Markovian process. In Section 8.3natucte our experimental
validation by comparing RCA with other methods which make use of equivalentgraints in a
clustering task, using a few benchmark data sets from the UCI repodtaiye(and Merz, 1998).
The evaluation of different metrics below is presented usimigulative neighbor puritgraphs,
which display the average (over all data points) percentage of coregglibors among the firkt
neighbors, as a function &f

8.1 Applying RCA to Facial Recognition

The task here is to classify facial images with respect to the person phptagt. In these exper-
iments we consider a retrieval paradigm reminiscent of nearest neigldssification, in which a
guery image leads to the retrieval of its nearest neighbor or its K-na@iggtbors in the data set.
Using a facial image database, we begin by evaluating nearest neidabsification with the RCA
distance, and compare its performance to supervised and unsupéeasgdg methods. We then
move on to address more specific issues: In 8.1.4 we look more closely atdrsteps of RCA,
Step 2 (cFLD dimensionality reduction) and Step 3 (whitening wl)t.and study their contribu-
tion to performance in isolation. In 8.1.5 the retrieval performance of RCAnspared with the
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Figure 2: A subset of the YaleB database which contains 1920 froctalrfi@ages of 30 individuals
taken under different lighting conditions.

algorithm presented by Xing et al. (2002). Finally in 8.1.6 we evaluate tleetedf chunklets sizes
on retrieval performance, and compare it to the predicted effect afidbiusize on the variance of
the RCA estimator.

8.1.1 THE DATA SET

We used a subset of the yaleB data set (Belhumeur et al., 1997), whitgirsofacial images of 30
subjects under varying lighting conditions. The data set contains a tot@R6fitnages, including
64 frontal pose images of each subject. The variability between imagess#rtieperson is mainly
due to different lighting conditions. These factors caused the variabilithgrimesages belonging to
the same subject to be greater than the variability among images of diffetgettsu(Adini et al.,
1997). As preprocessing, we first automatically centered all the images agtical flow. Images
were then converted to vectors, and each image was represented uBisg6s PCA coefficients.
Figure 2 shows a few images of four subjects.

8.1.2 BTAINING EQUIVALENCE CONSTRAINTS

We simulated thedistributed learning’scenario presented in Section 1 in order to obtain equiva-
lence constraints. In this scenario, we obtain equivalence constraingstbe help ofT teachers.
Each teacher is given a random selectiorLafata points from the data set, and is asked to give
his own labels to all the points, effectively partitioning the data set into elgnga classes. Each
teacher therefore provides both positive and negative constraints hidavever that RCA only uses
the positive constraints thus gathered. The total number of points in chsigk@vs linearly with
TL, the number of data points seen by all teachers. We control this amount, prbidHes a loose
bound on the number of points in chunklets, by varying the number of teei€hend keepingd-
constant. We tested a range of value§ dbr which TL is 10%, 30%, or 75% of the points in the
data sef.

The parameteL. controls the distribution of chunklet sizes. More specifically, we show in
Appendix D that this distribution is controlled by the ratie- ﬁ whereM is the number of classes
in the data. In all our experiments we have used?2. For this value the expected chunklet size is

5. In this scenario one usually obtains mostly ‘negative’ equivalenostrints, which are pairs of points that are
known to originate from different classes. RCA doesuse these ‘negative’ equivalence constraints.
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roughly 29 and we typically obtain many small chunklets. Figure 3 shows a histogranpictty
chunklet sizes, as obtained in our experiménts.

30% of points in chunkelts

120

2 3 4 5 6 7 8 9 10

Figure 3: Sample chunklet size distribution obtained using the distributedrigasoenario on a
subset of the yaleB data set with 1920 images fMrm 30 classes. L is chosen such that
r= ﬁ = 2. The histogram is plotted for distributed learning with 30% of the data points
in chunklets.

8.1.3 RCAON THE CONTINUUM BETWEEN SUPERVISED ANDUNSUPERVISEDLEARNING

The goal of our main experiment in this section was to assess the relatfeenp@nce of RCA as
a semi-supervised method in a face recognition task. To this extent we i following
methods:

e Eigenfaces (Turk and Pentland, 1991): this unsupervised methode®the dimensionality
of the data using PCA, and compares the images using the Euclidean metric éuticed
space. Images were normalized to have zero mean and unit variance.

e Fisherfaces (Belhumeur et al., 1997): this supervised method startplyyrgpP CA dimen-
sionality reduction as in the Eigenfaces method. It then uses all the datattabetapute the
FLD transformation (Fukunaga, 1990), and transforms the data aongbrd

e RCA: the RCA algorithm with dimensionality reduction as described in Sectiona,igh
PCA followed by cFLD. We varied the amount of data in constraints provid€ICA, using
thedistributed learningparadigm described above.

The left panel in Figure 4 shows the results of the different methods.giidh presents the
performance of RCA for low, moderate and high amounts of constrainedspcAs can be seen,
even with low amounts of equivalence constraints the performance of R@AGh closer to the
performance of the supervised FLD than to the performance of the enssed PCA. With Mod-
erate and high amounts of equivalence constraints RCA achieves nejginity rates which are

6. We used a different sampling scheme in the experiments which adtieesffect of chunklet size, see Section 8.1.6.
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Figure 4: Left: Cumulative purity graphs for the following algorithms andegipental conditions:
Eigenface (PCA), RCA 10%, RCA 30%, RCA 75%, and Fisherface (F-Ibe percent-
ages stated for RCA are the fractions of data points presented to the disttlearning’
oracle, as discussed in Section 8.1.2. The data was reduced to dimensisin®CA
for all the methods. It was then further reduced to dimension 30 using @fr L three
RCA variants, and using FLD for the Fisherface method. Results weragee: over 50
constraints realizations. The error bars give the Standard Errorediitan (SEMSs).
Right: Cumulative purity graphs for the fully supervised FLD, with and withiolly
labelled RCA. Here RCA dramatically enhances the performance of FLD.

higher than those achieved by the fully supervised Fisherfaces methdd,relying only on frag-
mentary chunklets with unknown class labels. This somewhat surprisialj sémms from the fact
that the fully supervised FLD in these experiments was not followed by whigen

In order to clarify this last point, note that RCA can also be used whemgiviellly labelled
training set. In this case, chunklets correspond uniquely and fully toedaaad the cFLD algorithm
for dimensionality reduction is equivalent to the standard FLD. In this settg Ban be viewed
as an augmentation of the standard, fully supervised FLD, which whiterautpet of FLD w.r.t
the within class covariance. The right panel in Figure 4 shows comparaswults of FLD with and
without whitening in the fully labelled case.

In order to visualize the effect of RCA in this task we also created some fRE4”, following
Belhumeur et al. (1997): We ran RCA on the images after applying PCAhamdeconstructed the
images. Figure 5 shows a few images and their reconstruction. Clearly R#atcally reduces
the effect of varying lighting conditions, and the reconstructed imagesafdme individual look
very similar to each other. The Eigenfaces (Turk and Pentland, 1991)chelid not produce
similar results.

8.1.4 FPARATING THE CONTRIBUTION OF THEDIMENSIONALITY REDUCTION AND
WHITENING STEPS INRCA

Figure 4 presents the results of RCA including the semi-supervised dimafiiaeduction of
cFLD. While this procedure yields the best results, it mixes the separatebcions of the two
main steps of the RCA algorithm, that is, dimensionality reduction via cFLD (Stap@yvhitening
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Figure 5: Top: Several facial images of two subjects under differehtitig conditions. Bottom:
the same images from the top row after applying PCA and RCA and then tagacting
the images. Clearly RCA dramatically reduces the effect of different ligltimglitions,
and the reconstructed images of each person look very similar to each other

of the inner chunklet covariance matrix (Step 3). In the left panel off€igithese contributions are
isolated.

It can be seen that when cFLD and whitening are used separatelyathegrbvide considerable
improvement in performance. These improvements are only partially depesdee the perfor-
mance gain when combining both procedures is larger than either one &iaihe. right panel of
Figure 6 we present learning curves which show the performance ARt and without dimen-
sionality reduction, as a function of the amount of supervision providecetalgorithm. For small
amounts of constraints, both curves are almost identical. However, asithigen of constraints
increases, the performance of RCA dramatically improves when using.cFLD

8.1.5 MMPARISON WITH THEMETHOD OF XING ET AL.

In another experiment we compared the algorithm of Xing et al. (2002) #h &Cthe YaleB data
set using code obtained from the author’s web site. The experimentphgatithe one described in
Section 8.1.2, with 30% of the data points presented to the distributed learaiclg.ovwwhile RCA
uses only the positive constraints obtained, the algorithm of Xing et al2§208s given both the
positive and negative constraints, as it can make use of both. Resudtwave in Figure 7, showing
that this algorithm failed to converge when given high dimensional datawasdutperformed by
RCA in lower dimensions.

8.1.6 THE EFFECT OFDIFFERENTCHUNKLET SIZES

In Section 5 we showed that RCA typically provides an estimator for the withss @avariance
matrix, which is not very sensitive to the size of the chunklets. This was tgrgroviding a
bound on the variance of the elements in the RCA estimator m@frixk). We can expect that
lower variance of the estimator will go hand in hand with higher purity perfocea In order to
empirically test the effect of chunklets’ size, we fixed the number of edgemce constraints, and
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Figure 6: Left: Cumulative purity graphs for 4 experimental conditiongial space, RCA with-
out cFLD, cFLD only, and RCA with cFLD (using the Euclidean norm in akes).
The data was reduced to 60 dimensions using unsupervised PCA. Theigmmiised
techniques used constraints obtained by distributed learning with 30% chth@aints.
RCA without cFLD was performed in the space of 60 PCA coefficients, vitnitee last
2 conditions dimensionality was further reduced to 30 using the constraiessitRwere
averaged over 50 constraints realizations. Right: Learning curviggtaoe purity per-
formance for 64 neighbors as a function of the amount of constrainesp@&tiormance is
measured by averaging (over all data points) the percentage of coeigbbors among
the first 64 neighbors. The amount of constraints is measured using ritenfge of
points given to the distributed learning oracle. Results are averaged bwmstraints
realizations. Error bars in both graphs give the standard errors af¢haa.

varied the size of the chunkle®&in the range{2 — 10}. The chunklets were obtained by randomly
selecting 30% of the data (total Bf= 1920 points) and dividing it into chunklets of sis&

The results can be seen in Figure 8. As expected the performance ofrRZéves as the size
of the chunklets increases. Qualitatively, this improvement agrees with eédéead improvement
in the RCA estimator’s variance, as most of the gain in performance is alodidiyned with chun-
klets of sizeS= 3. Although the bound presented is not tight, other reasons may acaouthef
difference between the graphs, including the weakness of the Gaassiamption used to derive
the bound (see Section 9), and the lack of linear connection betweentithates's variance and
purity performance.

8.2 Using RCA in a Surveillance Application

In this application, a stationary indoor surveillance camera provided gidea clips whose begin-
ning and end were automatically detected based on the appearance apealiaace of moving
targets. The database therefore included many clips, each displayingrenfyerson of unknown
identity. Effectively each clip provided a chunklet. The task in this casetavakister together all
clips in which a certain person appeared.

7. When necessary, the remainimgd(0.3P, S) points were gathered into an additional smaller chunklet.
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on the YaleB facial indaga set. Left:

Neighbor purity results obtained using 60 PCA coefficients. The algorithxingf et al.
(2002) failed to converge and returned a metric with chance level peafuze. Right:
Results obtained using a 30 dimensional representation, obtained by gpphlib to
the 60 PCA coefficients. Results are averaged over 50 constraintateslsz The error

bars give the standard errors of the mean.
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Figure 8: Left: Mean error rate on all 64 neighbors on the yaleB datalsat using 30% of the data

in chunklets. In this experiment we varied the

chunklet sizes while fixing takamount

of points in chunklets. Right: the theoretical bound over the ratio betweerattence of
the RCA matrix elements and the variance of the best possible estimator usirzgtée s
number of points (see inequality 12). The qualitative behavior of the gregpsimilar,
seemingly because a lower estimator variance tends to imply better puritymparfoe.

The task and our approach: The video clips were highly complex and diversified, for several
reasons. First, they were entirely unconstrained: a person could wetitvehere in the scene,

coming closer to the camera or walking away from it.

Therefore the sizeesudution of each

image varied dramatically. In addition, since the environment was not coredframages included
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Figure 9: Left: several images from a video clip of one subject. Right: cuimelaeighbor purity
results before and after RCA.

varying occlusions, reflections and (most importantly from our persggchiighly variable illu-

mination. In fact, the illumination changed dramatically across the scene both isitgtéfrom

brighter to darker regions), and in spectrum (from neon light to natigiaing). Figure 9 shows
several images from one input clip.

We sought to devise a representation that would enable the effectiteroigof clips, focusing
on color as the only low-level attribute that could be reliably used in this apiglicar herefore our
task was to accomplish some sort of color constancy, that is, to overcongertieeal problem of
irrelevant variability due to the varying illumination. This is accomplished by thé& RQorithm.

Image representation and RCA Each image in a clip was represented by its color histogram
in L*a*b* space (we used 5 bins for each dimension). We used the clips as chunldeter to
compute the RCA transformation. We then computed the distance betweenfgaiesyes using
two methodsi 1 and RCA (Mahalanobis). We used over 6000 images from 130 clips ktdtshof
20 different people. Figure 9 shows the cumulative neighbor purity aV@&000 images. One can
see that RCA makes a significant contribution by bringing ‘correct’ naghbloser to each other
(relative to other images). However, the effect of RCA on retrievdigperance here is lower than
the effect gained with the YaleB data base. While there may be severahsdas this, an important
factor is the difference between the way chunklets were obtained in theattacetts. The automatic
gathering of chunklets from a Markovian process tends to providekdisnwith dependent data
points, which supply less information regarding the within class covariant@ma

8.3 RCA and Clustering

In this section we evaluate RCA's contribution to clustering, and compareltetmative algorithms
that use equivalence constraints. We used six data sets from the WSltoep For each data set
we randomly selected a 99b of pairwise positive equivalence constraints (or chunklets of size 2).
We compared the following clustering algorithms:
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a. K-means using the default Euclidean metric and no side-information (Fgkyut890).

b. Constrained K-means + Euclidean metric: the K-means version sugges\adstaff et al.
(2001), in which a pair of pointéx, xj) € Qp is always assigned to the same cluster.

c. Constrained K-means + the metric proposed by Xing et al. (2002): The nelgarnt from
constraints inQp. For fairness we replicated the experimental design employed by Xing
et al. (2002), and allowed the algorithm to treat all unconstrained papeiofs as negative
constraints (the s€dy).

d. Constrained K-means + RCA: Constrained K-means using the RCA Malidéametric learned
from Qp.

e. EM: Expectation Maximization of a Gaussian Mixture model (using no side+imdtion).

f. Constrained EM: EM using side-information in the form of equivalencestamts (Shental
et al., 2004), when using the RCA distance metric as the initial metric.

Clustering algorithma ande are unsupervised and provide respective lower bounds for coraparis
with our algorithmsd and f. Clustering algorithm$ andc compete fairly with our algorithnal,
using the same kind of side information.

Experimental setup To ensure fair comparison with Xing et al. (2002), we used exactly the same
experimental setup as it affects the gathering of equivalence constaaititthe evaluation score
used. We tested all methods using two conditions, with: (i) “little” side-informa@pnand (ii)
“much” side-information. The set of pairwise similarity constrai@iswas generated by choosing
a random subset of all pairs of points sharing the same class identitinitially, there areN
‘connected components’ of unconstrained points, wiNeigthe number of data points. Randomly
choosing a pairwise constraint decreases the number of connectedreamp by 1 at most. In
the case of “little” (“much”) side-information, pairwise constraints are mmly added until the
number of different connected componelgds roughly Q9N (0.7N). As in the work of Xing et al.
(2002), no negative constraints were sampled.

Following Xing et al. (2002) we used a normalized accuracy score, thedindex” (Rand,
1971), to evaluate the partitions obtained by the different clustering algwitiMore formally,
with binary labels (or two clusters), the accuracy measure can be written as

Hc=cj} = H& =G}}
0.5m(m—1) ’

i>]

where X } denotes the indicator functiqd{True} = 1), 1{False} = 0), {¢ }" ; denotes the cluster
to which pointx; is assigned by the clustering algorithm, amndenotes the “correct” (or desirable)
assignment. The score above is the probability that the algorithm’s decigjardieg the label
equivalence of two points agrees with the decision of the “true” assignafent

Figure 10 shows comparative results using six different UCI data sé¢surlCthe RCA met-
ric significantly improved the results over the original K-means algorithms (thettconstrained

8. As noted by Xing et al. (2002), this score should be normalized wrenumber of clusters is larger than 2. Nor-
malization is achieved by sampling the p&ixs xj) such thak; andx; are from the same cluster with probability 0.5
and from different clusters with probability 0.5, so that “matches” antiatches” are given the same weight.
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Figure 10: Clustering accuracy on 6 UCI data sets. In each panel, tharsivon the left correspond
to an experiment with "little” side-information, and the six bars on the rightespond
to "much” side-information. From left to right the six bars correspongeesvely to
the algorithms described in the text, as follows: (a) K-means over the oriigiatlre
space (without using any side-information). (b) Constrained K-meagistbe original
feature space. (c) Constrained K-means over the feature spaasteay Xing et al.
(2002). (d) Constrained K-means over the feature space create@Ay(R) EM over
the original feature space (without using any side-information). (f)sBamed EM
(Shental et al., 2004) over the feature space created by RCA. Alsensaie P-the
number of pointsM—the number of classeB-the dimensionality of the feature space,
and K.—the mean number of connected components. The results were avekaged o
20 realizations of side-information. The error bars give the standasidtams. In all
experiments we used K-means with multiple restarts as in done by Xing et a2)(200

and unconstrained versions). Generally in the context of K-meanspsearee that using equiva-
lence constraints to find a better metric improves results much more than usindgdhisation to
constrain the algorithm. RCA achieves comparable results to those repgrigddoet al. (2002),
despite the big difference in computational cost between the two algorithenSéxtion 9.1).

The last two algorithms in our comparisons use the EM algorithm to compute aatjeee
Gaussian Mixture Model, and are therefore much more computationally imtendfe have added
these comparisons because EM implicitly changes the distance function eviepth space in a
locally linear way (that is, like a Mahalanobis distance). It may therefopeapthat EM can do
everything that RCA does and more, without any modification. The histognasmitarked by (e)
in Figure 10 clearly show that this is not the case. Only when we add cortsttaithe EM, and
preprocess the data with RCA, do we get improved results as shown bistbgram bins marked
by (f) in Figure 10.
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9. Discussion

We briefly discuss running times in Section 9.1. The applicability of RCA in géreanditions is
then discussed in 9.2.

9.1 Runtime Performance

Computationally RCA relies on a few relatively simple matrix operations (inveesiarsquare root)
applied to a positive-definite square matrix, whose size is the reduced dimality of the data.
This can be done fast and efficiently and is a clear advantage of thétlatgawver its competitors.

9.2 Using RCA when the Assumptions Underlying the M ethod are Violated

Figure 11: Extracting the shared component of the covariance matrix B&O#Ag In this exam-
ple the data originates from 2 Gaussian sources with the following diagowatiance
matrices: diag(Cy) = (g,1,2) anddiag(Cz) = (1,€,2). (a) The original data points
(b) The transformed data points when using RCA. In this example we used thi
points from each class as a single chunklet and therefore the chupnkbeiance ma-
trix is the average within-class covariance matrix. As can be seen RCAyctkavn-
scales the irrelevant variability in the Z axis, which is the shared comporighe @
classes covariance matrices. Specifically, the eigenvalues of the cweari@atrices
for the two classes are as follows (for= 0.1): class 1{3.947,1.0450.009) before
RCA, and(1.979,1.001,0.017) after RCA; class 2(3.953 1.045 0.010) before RCA,
and(1.984,1.001,0.022) after RCA. In this example, the condition numbers increased
by a factor of 378 and 424 respectively for both classes.

In order to obtain a strict probabilistic justification for RCA, we listed in SectitimeSfollowing
assumptions:

1. The classes have multi-variate normal distributions.
2. All the classes share the same covariance matrix.

3. The points in each chunklet are an i.i.d. sample from the class.
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What happens when these assumptions do not hold?

The first assumption gives RCA its probabilistic justification. Without it, in a distiin-free
model, RCA is the best linear transformation optimizing the criteria presentedctin®e 3-4:
maximal mutual information, and minimal within-chunklet distance. These critegiagemsonable
as long as the classes are approximately convex (as assumed by thethisaligtance between
chunklet’'s points and chunklet's means). In order to investigate this poipirieally, we used
Mardia’s statistical tests for multi-variate normality (Mardia, 1970). Theds (edich are based on
skewness and kurtosis) showed that all of the data sets used in ounems are significantly non-
Gaussian (except for the Iris UCI data set). Our experimental resutesfdine clearly demonstrate
that RCA performs well when the distribution of the classes in the data is not vaui#ite normal.

The second assumption justifies RCA's main computational step, which usaspircal aver-
age of all the chunklets covariance matrices in order to estimate the global wlglsscovariance
matrix. When this assumption fails, RCA effectively extracts the shared coempof all the classes
covariance matrices, if such component exists. Figure 11 presents sirailliessexample of the use
of RCA on data from two classes with different covariance matrices. Atifaive measure of
RCA'’s partial success in such cases can be obtained from the chatigecondition numbe(the
ratio between the largest and smallest eigenvalues) of the within-classacmeamatrices of each
of the classes, before and after applying RCA. Since RCA attempts to whéemitthin-class co-
variance, we expect the condition number of the within-class covariant&easato decrease. This
is indeed the case for the various classes in all of the data sets used kpetinental results.

The third assumption may break down in many practical applications, whekiels are auto-
matically collected and the points within a chunklet are no longer indepentlene@nother. As a
result chunklets may be composed of points which are rather close tothechemd whose distribu-
tion does not reflect all the typical variance of the true distribution. In #ie dRCA's performance
is not guaranteed to be optimal (see Section 8.2).

10. Conclusion

We have presented an algorithm which uses side-information in the forquiMadence constraints,
in order to learn a Mahalanobis metric. We have shown that our method is optimdal several
criteria. Our empirical results show that RCA reduces irrelevant varialiilithe data and thus
leads to considerable improvements in clustering and distance based tetrieva

Appendix A. Information Maximization with Non-Invertible Linear
Transfor mations

Here we sketch the proof of the claim made in Section 3.3. As before, wetalbyC the average
covariance matrix of the chunklets. We can rewrite the constrained eipmeésom Equation 5 as

Hence the Lagrangian can be written as
log|AS, Al — A(tr (ACA) —1).
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Differentiating the Lagrangian with respectAgives
T A (AT AN = ACAL

Multiplying by A and rearranging terms, we gkst: ACA'. Hence as in RCAA must whiten
the data with respect to the chunklet covaria@da a yet to be determined subspace. We can now
use the equality in (5) to finA:

A . K
tr(Ac:At):tr(X):X =1= A=K
A 1
ACA = —|
— K’

whereK is the dimension of the projection subspace.
Next, since in our solution spad&CA' = %I, it follows that log ACA'| = Klog% holds for all
points. Hence we can modify the maximization argument as follows:

AS A 1
log|AZ,All = lo | +Klog=
glAZA| g ACA 9
Now the optimization argument has a familiar form. It is known (Fukunaga, ) #880maximiz-
ing the determinant ratio can be done by projecting the space on the sparficstd eigenvectors
of C~15,. Denote byG the solution matrix for this unconstrained problem. This matrix orthogo-
nally diagonalizes bot€ and=y, soGCG = A; andG=,G' = A, for A1, A, diagonal matrices. In

order to enforce the constraints we define the ma@tﬁ;x\/%/\IOE’G and claim thaf is the solution

of the constrained problem. Notice that the value of the maximization argumestrid change
when we switch fronfA to G sinceA is a product ofs and another full ranked matrix. It can also be
shown thatA satisfies the constraints and is thus the solution of the Problem (5).

Appendix B. Variance Bound on the RCA Covariance Estimator

In this appendix we prove Inequality 12 from Section 5. Assume we havenk data points

X = {Xji }{‘;klﬁjzl in nchunklets of sizé& each. We assume that all chunklets are drawn independently
from Gaussian sources with the same covariance matrix. Denotingthe mean of chunklet i, the
unbiased RCA estimator of this covariance matrix is

1 n 1 k T
ﬁjzlmi;(xji —my)(Xji —m)".

It is more convenient to estimate the convergence of the covariance estonatatd with a
diagonal covariance matrix. We hence consider a diagonalized veffdio® @ovariance, and return
to the original covariance matrix toward the end of the proof. Wedenote the diagonalization
transformation of the covariance matfixof the Gaussian sources thatisCU' = A whereA is
a diagonal matrix witA; }P ; on the diagonal. LeZ =UX = {z,.}I 1j—1 denote the transformed

data. Denote the transformed within class covariance matrix estimatiGt(nyk) = UC(n,k)Ut,
and denote the chunklet meansrby=Um. We can analyze the variance@f as follows:

n k
var(C!(n,k)) = var[= zik— Z zji —m¥) (zj —m¥)T]
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- }var[i : (zji —m)(zji —mHT] (15)
n k—1 JZl ji i )1 1 .

The last equality holds since the summands of the external sum are samgliaicog matrices of
independent chunklets drawn from sources with the same covariandg.matr
The variance of the sample covariance, assessedKnooints, for diagonalized Gaussian data
is known to be (Fukunaga, 1990)
A 0% A Al A oA
var(Cjj) = 1 var(Gj) = —; covGij,Cq) =0.

Hence (15) is simply

var(C) = OREIE var(C-“-):%; covC,Gi) = 0.

ReplacingN = nk, we can write

var(CY) =

R )\)\ ~ ~
?7; var(Clj) = %; cou(Cij, Ca) =0,

and for the diagonal tern@

2\? k 222 k 222 Kk

pu— —S pr—
N(I-1) k-1 N “k-1IN-1 k-1

var(é“(%,k)“) = var(CY(1,N);).
This inequality trivially holds for the off-diagonal covariance elements.

Getting back to the original data covariance, we note that in matrix elements ncﬂ}p]tie
zarzlcgrUiqur whereD is the data dimension. Therefore

varlGj(n.k)] Y ar—1var[C(n,k)gUiqUj] < ¥ or—1 g var(Cl(1, nk)qrUigUje] _k
var(Gij (1, nk)] zc?,rzlvar[cu(lvnk)CIfUiqul’] B Z(?,rlear[C“(Lnk)quiqur] k=1

where the first equality holds becaus(C!,CY)) = 0.

Appendix C. Online RCA with Chunklets of General Size

The online RCA algorithm can be extended to handle a stream of chunkletsyahg size. The
procedure is presented in Algorithm 4.

The steady state of the weight matkix can be analyzed in a way similar to the analysis in
Section 3. The result M/ = PE[2 5", (x| —m")(x" — m" )!]~2 whereP is an orthonormal matrix,
and sdW is equivalent to the RCA transformation of the current distribution.
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Algorithm 4 Online RCA for chunklets of variable size

Input: a stream of chunklets where the points in a chunklet are knowridod® the same class.
Initialize W to a symmetric random matrix witf\W|| << 1.

At time step T do:

e receive a chunklefx], ...,xT} and compute its meam’ = 57, x';
e computen difference vector| =x' —m";

e transformh| usingw, to gety! =WH';

o updateW =W-+n3l, (W—yf (y)'W).

wheren > 0 determines the step size.

Appendix D. The Expected Chunklet Sizein the Distributed L earning Paradigm

We estimate the expected chunklet size obtained when using the distributeddegaaradigm in-
troduced in Section 8. In this scenario, we use the helptefachers, each of which is provided with

a random selection df data points. Let us assume that the data contdirgiuiprobable classes,
and that the size of the data set is large relative tDefine the random variableg as the number of
points from class observed by teachgr Due to the symmetry among classes and among teachers,
the distribution ofxiJ is independent af and j, thus defined as. It can be well approximated by a
Bernoulli distributionB(L, ﬁ), while considering onlyx > 2 (sincex = 0,1 do not form chunklets).
Specifically,

. B 1 LY, T, Yoo oo
p(x=i|x#0,1) = 1= p(X=0)—px=1) ( i >(M) (1 M) i=23,...
We can approximatp(x = 0) andp(x=1) as
1.5 . L IR N
px=0)=Q1-+) ~em , px=1)=(1-y) =W

Using these approximations, we can derive an approximation for the texpeltunklet size as
a function of the ratio = &:

WoPx=1)  r-e7)
1-p(x=0)—p(x=1) 1-(r+le"

E(X|x# 0,x# 1) =
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