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Abstract
Many learning algorithms use a metric defined over the input space as a principal tool, and

their performance critically depends on the quality of thismetric. We address the problem of
learning metrics using side-information in the form of equivalence constraints. Unlike labels, we
demonstrate that this type of side-information can sometimes be automatically obtained without
the need of human intervention. We show how such side-information can be used to modify the
representation of the data, leading to improved clusteringand classification.

Specifically, we present the Relevant Component Analysis (RCA) algorithm, which is a simple
and efficient algorithm for learning a Mahalanobis metric. We show that RCA is the solution of
an interesting optimization problem, founded on an information theoretic basis. If dimensionality
reduction is allowed within RCA, we show that it is optimallyaccomplished by a version of Fisher’s
linear discriminant that uses constraints. Moreover, under certain Gaussian assumptions, RCA can
be viewed as a Maximum Likelihood estimation of the within class covariance matrix. We conclude
with extensive empirical evaluations of RCA, showing its advantage over alternative methods.
Keywords: clustering, metric learning, dimensionality reduction, equivalence constraints, side
information.

1. Introduction

A number of learning problems, such as clustering and nearest neighborclassification, rely on some
a priori defined distance function over the input space. It is often the case that selecting a “good”
metric critically affects the algorithms’ performance. In this paper, motivated by the wish to boost
the performance of these algorithms, we study ways to learn a “good” metric using side information.

One difficulty in finding a “good” metric is that its quality may be context dependent. For
example, consider an image-retrieval application which includes many facialimages. Given a
query image, the application retrieves the most similar faces in the database according to some
pre-determined metric. However, when presenting the query image we may beinterested in retriev-
ing other images of the same person, or we may want to retrieve other faces with the same facial
expression. It seems difficult for a pre-determined metric to be suitable fortwo such different tasks.

In order to learn a context dependent metric, the data set must be augmented by some additional
information, or side-information, relevant to the task at hand. For example we may have access
to the labels ofpart of the data set. In this paper we focus on another type of side-information,
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in which equivalence constraintsbetween a few of the data points are provided. More specifically
we assume knowledge about small groups of data points that are known to originate from the same
class, although their label is unknown. We term these small groups of points“chunklets”.

A key observation is that in contrast to explicit labels that are usually provided by a human
instructor, in many unsupervised learning tasks equivalence constraintsmay be extracted with min-
imal effort or even automatically. One example is when the data is inherently sequential and can be
modelled by a Markovian process. Consider for example movie segmentation,where the objective is
to find all the frames in which the same actor appears. Due to the continuous nature of most movies,
faces extracted from successive frames in roughly the same location canbe assumed to come from
the same person. This is true as long as there is no scene change, which can be robustly detected
(Boreczky and Rowe, 1996). Another analogous example is speaker segmentation and recognition,
in which the conversation between several speakers needs to be segmented and clustered according
to speaker identity. Here, it may be possible to automatically identify small segmentsof speech
which are likely to contain data points from a single yetunknownspeaker.

A different scenario, in which equivalence constraints are the naturalsource of training data,
occurs when we wish to learn from several teachers who do not know each other and who are not
able to coordinate among themselves the use of common labels. We call this scenario ‘distributed
learning’.1 For example, assume that you are given a large database of facial imagesof many people,
which cannot be labelled by a small number of teachers due to its vast size. The database is therefore
divided (arbitrarily) intoP parts (whereP is very large), which are then given toP teachers to
annotate. The labels provided by the different teachers may be inconsistent: as images of the same
person appear in more than one part of the database, they are likely to be given different names.
Coordinating the labels of the different teachers is almost as daunting as labelling the original data
set. However, equivalence constraints can be easily extracted, since points which were given the
same tag by a certain teacher are known to originate from the same class.

In this paper we study how to use equivalence constraints in order to learnan optimal Maha-
lanobis metric between data points. Equivalently, the problem can also be posed as learning a good
representation function, transforming the data representation by the square root of the Mahalanobis
weight matrix. Therefore we shall discuss the two problems interchangeably.

In Section 2 we describe the proposed method–the Relevant Component Analysis (RCA) algo-
rithm. Although some of the interesting results can only be proven using explicitGaussian assump-
tions, the optimality of RCA can be shown with some relatively weak assumptions, restricting the
discussion to linear transformations and the Euclidean norm. Specifically, in Section 3 we describe a
novel information theoretic criterion and show that RCA is its optimal solution. IfGaussian assump-
tions are added the result can be extended to the case where dimensionality reduction is permitted,
and the optimal solution now includes Fisher’s linear discriminant (Fukunaga, 1990) as an inter-
mediate step. In Section 4 we show that RCA is also the optimal solution to another optimization
problem, seeking to minimize within class distances. Viewed this way, RCA is directlycompared to
another recent algorithm for learning Mahalanobis distance from equivalence constraints, proposed
by Xing et al. (2002). In Section 5 we show that under Gaussian assumptions RCA can be inter-
preted as the maximum-likelihood (ML) estimator of the within class covariance matrix. We also
provide a bound over the variance of this estimator, showing that it is at mosttwice the variance of
the ML estimator obtained using the fully labelled data.

1. A related scenario (which we call ‘generalized relevance feedback’), where users of a retrieval engine are asked to
annotate the retrieved set of data points, has similar properties.
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The successful application of RCA in high dimensional spaces requires dimensionality reduc-
tion, whose details are discussed in Section 6. An online version of the RCA algorithm is presented
in Section 7. In Section 8 we describe extensive empirical evaluations of theRCA algorithm. We
focus on two tasks–data retrieval and clustering, and use three types ofdata: (a) A data set of frontal
faces (Belhumeur et al., 1997); this example shows that RCA with partial equivalence constraints
typically yields comparable results to supervised algorithms which use fully labelled training data.
(b) A large data set of images collected by a real-time surveillance application,where the equiva-
lence constraints are gathered automatically. (c) Several data sets from the UCI repository, which
are used to compare between RCA and other competing methods that use equivalence constraints.

1.1 Related Work

There has been much work on learning representations and distance functions in the supervised
learning settings, and we can only briefly mention a few examples. Hastie and Tibshirani (1996)
and Jaakkola and Haussler (1998) use labelled data to learn good metrics for classification. Thrun
(1996) learns a distance function (or a representation function) for classification using a “leaning-to-
learn” paradigm. In this setting several related classification tasks are learned using several labelled
data sets, and algorithms are proposed which learn representations and distance functions in a way
that allows for the transfer of knowledge between the tasks. In the work of Tishby et al. (1999)
the joint distribution of two random variablesX andZ is assumed to be known, and one seeks a
compact representation ofX which bears high relevance toZ. This work, which is further developed
in Chechik and Tishby (2003), can be viewed as supervised representation learning.

As mentioned, RCA can be justified using information theoretic criteria on the onehand, and
as an ML estimator under Gaussian assumptions on the other. Information theoretic criteria for
unsupervised learning in neural networks were studied by Linsker (1989), and have been used since
in several tasks in the neural network literature. Important examples are self organizing neural
networks (Becker and Hinton, 1992) and Independent Component Analysis (Bell and Sejnowski,
1995)). Viewed as a Gaussian technique, RCA is related to a large family of feature extraction
techniques that rely on second order statistics. This family includes, among others, the techniques
of Partial Least-Squares (PLS) (Geladi and Kowalski, 1986), Canonical Correlation Analysis (CCA)
(Thompson, 1984) and Fisher’s Linear Discriminant (FLD) (Fukunaga, 1990). All these techniques
extract linear projections of a random variableX, which are relevant to the prediction of another
variableZ in various settings. However, PLS and CCA are designed for regression tasks, in which
Z is a continuous variable, while FLD is used for classification tasks in whichZ is discrete. Thus,
RCA is more closely related to FLD, as theoretically established in Section 3.3. Anempirical
investigation is offered in Section 8.1.3, in which we show that RCA can be used to enhance the
performance of FLD in the fully supervised scenario.

In recent years some work has been done on using equivalence constraints as side information.
Both positive (‘a is similar to b’) and negative (‘a is dissimilar from b’) equivalence constraints were
considered. Several authors considered the problem of semi-supervised clustering using equivalence
constraints. More specifically, positive and negative constraints were introduced into the complete
linkage algorithm (Klein et al., 2002), the K-means algorithm (Wagstaff et al.,2001) and the EM
of a Gaussian mixture model (Shental et al., 2004). A second line of research, to which this work
belongs, focuses on learning a ‘good’ metric using equivalence constraints. Learning a Mahalanobis
metric from both positive and negative constraints was addressed in the work of Xing et al. (2002),
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presenting an algorithm which uses gradient ascent and iterative projections to solve a convex non
linear optimization problem. We compare this optimization problem to the one solved byRCA in
Section 4, and empirically compare the performance of the two algorithms in Section 8. The initial
description of RCA was given in the context of image retrieval (Shental etal., 2002), followed by
the work of Bar-Hillel et al. (2003). Recently Bilenko et al. (2004) suggested a K-means based clus-
tering algorithm that also combines metric learning. The algorithm uses both positive and negative
constraints and learns a single or multiple Mahalanobis metrics.

2. Relevant Component Analysis: The Algorithm

Relevant Component Analysis (RCA) is a method that seeks to identify and down-scale global
unwanted variability within the data. The method changes the feature space used for data repre-
sentation, by a global linear transformation which assigns large weights to “relevant dimensions”
and low weights to “irrelevant dimensions” (see Tenenbaum and Freeman, 2000). These “relevant
dimensions” are estimated usingchunklets, that is, small subsets of points that are known to belong
to the same althoughunknownclass. The algorithm is presented below as Algorithm 1 (Matlab code
can be downloaded from the authors’ sites).

Algorithm 1 The RCA algorithm

Given a data setX = {xi}
N
i=1 andn chunkletsCj = {x ji}

n j

i=1 j = 1. . .n, do

1. Compute the within chunklet covariance matrix (Figure 1d)

Ĉ =
1
N

n

∑
j=1

n j

∑
i=1

(x ji −mj)(x ji −mj)
t , (1)

wheremj denotes the mean of the j’th chunklet.

2. If needed, apply dimensionality reduction to the data usingĈ as described in Algorithm 2 (see
Section 6).

3. Compute the whitening transformation associated withĈ: W = Ĉ− 1
2 (Figure 1e), and apply

it to the data points:Xnew= WX (Figure 1f), whereX refers to the data points after dimen-
sionality reduction when applicable. Alternatively, use the inverse ofĈ in the Mahalanobis
distance:d(x1,x2) = (x1−x2)

tĈ−1(x1−x2).

More specifically, pointsx1 andx2 are said to be related by a positive constraint if it is known
that both points share the same (unknown) label. If pointsx1 and x2 are related by a positive
constraint, andx2 and x3 are also related by a positive constraint, then a chunklet{x1,x2,x3} is
formed. Generally, chunklets are formed by applying transitive closure over the whole set of positive
equivalence constraints.

The RCA transformation is intended to reduce clutter, so that in the new feature space, the inher-
ent structure of the data can be more easily unravelled (see illustrations in Figure 1a-f). To this end,
the algorithm estimates the within class covariance of the datacov(X|Z) whereX andZ describe the
data points and their labels respectively. The estimation is based on positive equivalence constraints
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only, and does not use any explicit label information. In high dimensional data, the estimated ma-
trix can be used for semi-supervised dimensionality reduction. Afterwards, the data set is whitened
with respect to the estimated within class covariance matrix. The whitening transformationW (in
Step 3 of Algorithm 1) assigns lower weights to directions of large variability, since this variability
is mainly due to within class changes and is therefore “irrelevant” for the taskof classification.

(a) (b) (c)

(d) (e) (f)

Figure 1: An illustrative example of the RCA algorithm applied to synthetic Gaussian data. (a)
The fully labelled data set with 3 classes. (b) Same data unlabelled; clearly theclasses’
structure is less evident. (c) The set of chunklets that are provided to theRCA algorithm
(points that share the same color and marker type form a chunklet). (d) The centered
chunklets, and their empirical covariance. (e) The whitening transformation applied to
the chunklets. (f) The original data after applying the RCA transformation.

The theoretical justifications for the RCA algorithm are given in Sections 3-5. In the following
discussion, the term ‘RCA’ refers to the algorithm either with or without dimensionality reduction
(optional Step 2). Usually the exact meaning can be readily understood in context. When we
specifically discuss issues regarding the use of dimensionality reduction, we may use the explicit
terms ‘RCA with (or without) dimensionality reduction’.

RCA does not use negative equivalence constraints. While negative constraints clearly contain
useful information, they are less informative than positive constraints (see counting argument be-
low). They are also much harder to use computationally, due partly to the factthat unlike positive
constraints, negative constraints are not transitive. In our case, the näıve incorporation of negative
constraints leads to a matrix solution which is the difference of two positive definite matrices, and
as a results does not necessarily produce a legitimate Mahalanobis metric. Analternative approach,
which modifies the optimization function to incorporate negative constraints, as used for example by
Xing et al. (2002), leads to a non-linear optimization problem with the usual associated drawbacks
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of increased computational load and some uncertainty about the optimality of thefinal solution.2 In
contrast, RCA is the closed form solution of several interesting optimization problem, whose com-
putation is no more complex than a single matrix inversion. Thus, in the tradeoff between runtime
efficiency and asymptotic performance, RCA chooses the former and ignores the information given
by negative equivalence constraints.

There is some evidence supporting the view that positive constraints are more informative than
negative constraints. Firstly, a simple counting argument shows that positive constraints exclude
more labelling possibilities than negative constraints. If for example there areM classes in the
data, two data points haveM2 possible label combinations. A positive constraint between the points
reduces this number toM combinations, while a negative constraint gives a much more moderate
reduction toM(M−1) combinations. (This argument can be made formal in information theoretic
terms.) Secondly, empirical evidence from clustering algorithms which use both types of constraints
shows that in most cases positive constraints give a much higher performance gain (Shental et al.,
2004; Wagstaff et al., 2001). Finally, in most cases in which equivalenceconstraints are gathered
automatically, only positive constraints can be gathered.

Step 2 of the RCA algorithm applies dimensionality reduction to the data if needed.In high
dimensional spaces dimensionality reduction is almost always essential for the success of the algo-
rithm, because the whitening transformation essentially re-scales the variabilityin all directions so
as to equalize them. Consequently, dimensions with small total variability cause instability and, in
the zero limit, singularity.

As discussed in Section 6, the optimal dimensionality reduction often starts with Principal Com-
ponent Analysis (PCA). PCA may appear contradictory to RCA, since it eliminates principal dimen-
sions with small variability, while RCA emphasizes principal dimensions with small variability.
One should note, however, that the principal dimensions are computed in different spaces. The
dimensions eliminated by PCA have small variability in the original data space (corresponding to
Cov(X)), while the dimensions emphasized by RCA have low variability in a space whereeach
point is translated according to the centroid of its own chunklet (corresponding toCov(X|Z)). As a
result, the method ideally emphasizes those dimensions with large total variance,but small within
class variance.

3. Information Maximization with Chunklet Constraints

How can we use chunklets to find a transformation of the data which improves itsrepresentation?
In Section 3.1 we state the problem for general families of transformations anddistances, present-
ing an information theoretic formulation. In Section 3.2 we restrict the family of transformation to
non-singular linear maps, and use the Euclidean metric to measure distances.The optimal solution
is then given by RCA. In Section 3.3 we widen the family of permitted transformations to include
non-invertible linear transformations. We show that for normally distributed data RCA is the opti-
mal transformation when its dimensionality reduction is obtained with a constraints based Fisher’s
Linear Discriminant (FLD).

2. Despite the problem’s convexity, the proposed gradient based algorithm needs tuning of several parameters, and is
not guaranteed to find the optimum without such tuning. See Section 8.1.5 for relevant empirical results.
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3.1 An Information Theoretic Perspective

Following Linsker (1989), an information theoretic criterion states that an optimal transformation of
the inputX into its new representationY, should seek to maximize the mutual informationI(X,Y)
betweenX andY under suitable constraints. In the general case a setX = {xi} of data points inR D

is transformed into the setY = { f (xi)} of points inR K . We seek a deterministic functionf ∈ F
that maximizesI(X,Y), whereF is the family of permitted transformation functions (a “hypotheses
family”).

First, note that sincef is deterministic, maximizingI(X,Y) is achieved by maximizing the
entropyH(Y) alone. To see this, recall that by definition

I(X,Y) = H(Y)−H(Y|X)

whereH(Y) andH(Y|X) are differential entropies, asX andY are continuous random variables.
Since f is deterministic, the uncertainty concerningY whenX is known is minimal, thusH(Y|X)
achieves its lowest possible value at−∞.3 However, as noted by Bell and Sejnowski (1995),H(Y|X)
does not depend onf and is constant for every finite quantization scale. Hence maximizingI(X,Y)
with respect tof can be done by considering only the first termH(Y).

Second, note also thatH(Y) can be increased by simply ‘stretching’ the data space. For example,
if Y = f (X) for an invertible continuous function, we can increaseH(Y) simply by choosingY =
λ f (X) for any λ > 1. In order to avoid the trivial solutionλ → ∞, we can limit the distances
between points contained in a single chunklet . This can be done by constraining the average
distance between a point in a chunklet and the chunklet’s mean. Hence the optimization problem is

max
f∈F

H(Yf ) s.t.
1
N

n

∑
j=1

n j

∑
i=1

||y ji −my
j || ≤ κ (2)

where{y ji}
n , n j

j=1,i=1 denote the set of points inn chunklets after the transformation,my
j denotes the

mean of chunkletj after the transformation, andκ is a constant.

3.2 RCA: The Optimal Linear Transformation for the Euclidean Norm

Consider the general problem (2) for the familyF of invertible linear transformations, and using
the squared Euclidean norm to measure distances. Sincef is invertible, the connection between
the densities ofY = f (X) andX is expressed bypy(y) = px(x)

|J(x)| , where|J(x)| is the Jacobian of the
transformation. Frompy(y)dy= px(x)dx, it follows thatH(Y) andH(X) are related as follows:

H(Y) = −
Z

y

p(y) logp(y)dy= −
Z

x

p(x) log
p(x)
|J(x)|

dx= H(X)+ 〈log|J(x)|〉x.

For the linear mapY = AX the Jacobian is constant and equals|A|, and it is the only term in
H(Y) that depends on the transformationA. Hence Problem (2) is reduced to

max
A

log|A| s.t.
1
N

n

∑
j=1

n j

∑
i=1

||y ji −my
j ||

2
2 ≤ κ.

3. This non-intuitive divergence is a result of the generalization of information theory to continuous variables, that is,
the result of ignoring the discretization constant in the definition of differential entropy.
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Multiplying a solution matrixA by λ > 1 increases both thelog|A| argument and the constrained
sum of within chunklet distances. Hence the maximum is achieved at the boundary of the feasible
region, and the constraint becomes an equality. The constantκ only determines the scale of the
solution matrix, and is not important in most clustering and classification tasks, which essentially
rely on relative distances. Hence we can setκ = 1 and solve

max
A

log|A| s.t.
1
N

n

∑
j=1

n j

∑
i=1

||y ji −my
j ||

2
2 = 1. (3)

Let B = AtA; sinceB is positive definite and log|A| = 1
2 log|B|, Problem (3) can be rewritten as

max
B�0

log|B| s.t.
1
N

n

∑
j=1

n j

∑
i=1

||x ji −mj ||
2
B = 1, (4)

where||.||B denotes the Mahalanobis distance with weight matrixB. The equivalence between the
problems is valid since for anyB� 0 there is anA such thatB = AtA, and so a solution to (4) gives
us a solution to (3) (and vice versa).

The optimization problem (4) can be solved easily, since the constraint is linear in B. The
solution isB = 1

DĈ−1, whereĈ is the average chunklet covariance matrix (1) andD is the dimen-
sionality of the data space. This solution is identical to the Mahalanobis matrix compute by RCA
up to a global scale factor, or in other words, RCA is a scaled solution of (4).

3.3 Dimensionality Reduction

We now solve the optimization problem (4) for the family of general linear transformations, that is,
Y = AX whereA∈ MK×D andK ≤ D. In order to obtain workable analytic expressions, we assume
that the distribution ofX is a multivariate Gaussian, from which it follows thatY is also Gaussian
with the entropy

H(Y) =
D
2

log2πe+
1
2

log|Σy| =
D
2

log2πe+
1
2

log|AΣxA
t |.

Following the same reasoning as in Section 3.2 we replace the inequality with equality and letκ = 1.
Hence the optimization problem becomes

max
A

log|AΣxA
t | s.t.

1
N

n

∑
j=1

n j

∑
i=1

||x ji −mj ||
2
AtA = 1. (5)

For a given target dimensionalityK, the solution of the problem is Fisher linear discriminant
(FLD),4 followed by the whitening of the within chunklet covariance in the reduced space. A sketch
of the proof is given in Appendix A. The optimal RCA procedure therefore includes dimensionality
reduction. Since the FLD transformation is computed based on the estimated withinchunklet co-
variance matrix, it is essentially a semi-supervised technique, as describedin Section 6. Note that
after the FLD step, the within class covariance matrix in the reduced space is always diagonal, and
Step 3 of RCA amounts to the scaling of each dimension separately.

4. Fisher Linear Discriminant is a linear projectionA from R D to R K with K < D, which maximizes the determinant
ratio max

A∈MK×D

ASt At

ASwAt , whereSt andSw denote the total covariance and the within class covariance respectively.
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4. RCA and the Minimization of Within Class Distances

In order to gain some intuition about the solution provided by the information maximization crite-
rion (2), let us look at the optimization problem obtained by reversing the roles of the maximization
term and the constraint term in problem (4):

min
B

1
N

n

∑
j=1

n j

∑
i=1

||x ji −mj ||
2
B s.t. |B| ≥ 1. (6)

We interpret problem (6) as follows: a Mahalanobis distanceB is sought, which minimizes
the sum of all within chunklet squared distances, while|B| ≥ 1 prevents the solution from being
achieved by “shrinking” the entire space. Using the Kuhn-Tucker theorem, we can reduce (6) to

min
B

n

∑
j=1

n j

∑
i=1

||x ji −mj ||
2
B−λ log|B| s.t. λ ≥ 0, λ log|B| = 0. (7)

Differentiating this Lagrangian shows that the minimum is given byB = |Ĉ|
1
DĈ−1, whereĈ is the

average chunklet covariance matrix. Once again, the solution is identical tothe Mahalanobis matrix
in RCA up to a scale factor.

It is interesting, in this respect, to compare RCA with the method proposed recently by Xing
et al. (2002). They consider the related problem of learning a Mahalanobis distance using side
information in the form of pairwise constraints (Chunklets of size> 2 are not considered). It is
assumed that in addition to the set of positive constraintsQP, one is also given access to a set of
negative constraintsQN–a set of pairs of points known to be dissimilar. Given these sets, they pose
the following optimization problem:

min
B

∑
(x1,x2)∈QP

||x1−x2||
2
B s.t. ∑

(x1,x2)∈QN

||x1−x2||B ≥ 1, B� 0. (8)

This problem is then solved using gradient ascent and iterative projectionmethods.
In order to allow a clear comparison of RCA with (8), we reformulate the argument of (6) using

only within chunklet pairwise distances. For each pointx ji in chunklet j we have

x ji −mj = x ji −
1
n j

n j

∑
k=1

x jk =
1
n j

n j

∑
k=1

(x ji −x jk).

Problem (6) can now be rewritten as

min
B

1
N

n

∑
j=1

1

n2
j

n j

∑
i=1

||∑(x ji −x jk)||
2
B s.t. |B| ≥ 1. (9)

When only chunklets of size 2 are given, as in the case studied by Xing et al. (2002), (9) reduces to

min
B

1
2N

n

∑
j=1

||x j1−x j2||
2
B s.t. |B| ≥ 1. (10)

Clearly the minimization terms in problems (10) and (8) are identical up to a constant ( 1
2N ).

The difference between the two problems lies in the constraint term: the constraint proposed by
Xing et al. (2002) uses pairs of dissimilar points, whereas the constraint inthe RCA formulation
affects global scaling so that the ‘volume’ of the Mahalanobis neighborhood is not allowed to shrink
indefinitely. As a result Xing et al. (2002) are faced with a much harder optimization problem,
resulting in a slower and less stable algorithm.
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5. RCA and Maximum Likelihood: The Effect of Chunklet Size

We now consider the case where the data consists of several normally distributed classes sharing
the same covariance matrix. Under the assumption that the chunklets are sampled i.i.d. and that
points within each chunklet are also sampled i.i.d., the likelihood of the chunklets’distribution can
be written as

n

∏
j=1

n j

∏
i=1

1

(2π)
D
2 |Σ| 1

2

exp(− 1
2(x ji−mj )

tΣ−1(x ji−mj )).

Writing the log-likelihood while neglecting constant terms and denotingB = Σ−1, we obtain

n

∑
j=1

n j

∑
i=1

||x ji −mj ||
2
B−N log|B|, (11)

whereN is the total number of points in chunklets. Maximizing the log-likelihood is equivalent
to minimizing (11), whose minimum is obtained whenB equals the RCA Mahalanobis matrix (1).
Note, moreover, that (11) is rather similar to the Lagrangian in (7), where the Lagrange multiplier
is replaced by the constantN. Hence, under Gaussian assumptions, the solution of Problem (7) is
probabilistically justified by a maximum likelihood formulation.

Under Gaussian assumptions, we can further define anunbiasedversion of the RCA estimator.
Assume for simplicity that there areN constrained data points divided inton chunklets of sizek
each. TheunbiasedRCA estimator can be written as

Ĉ(n,k) =
1
n

n

∑
j=1

1
k−1

k

∑
i=1

(x ji −mi)(x ji −mi)
t ,

whereĈ(n,k) denotes the empirical mean of the covariance estimators produced by each chunklet.
It is shown in Appendix B that the variance of the elementsĈi j of the estimating matrix is bounded
by

Var(Ĉi j (n,k)) ≤ (1+
1

k−1
)Var(Ĉi j (1,nk)), (12)

whereĈi j (1,nk) is the estimator when all theN = nk points are known to belong to the same class,
thus forming the best estimate possible fromN points. This bound shows that the variance of the
RCA estimator rapidly converges to the variance of the best estimator, even for chunklets of small
size. For the smallest possible chunklets, of size 2, the variance is only twiceas high as the best
possible.

6. Dimensionality Reduction

As noted in Section 2, RCA may include dimensionality reduction. We now turn to address this
issue in detail. Step 3 of the RCA algorithm decreases the weight of principaldirections along
which the within class covariance matrix is relatively high, and increases the weight of directions
along which it is low. This intuition can be made precise in the following sense:

Denote by{λi}D
i=1 the eigenvalues of the within class covariance matrix, and consider the

squared distance between two points from the same class||x1−x2||
2. We can diagonalize the within
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class covariance matrix using an orthonormal transformation which does not change the distance.
Therefore, let us assume without loss of generality that the covariance matrix is diagonal.

Before whitening, the average squared distance isE[||x1− x2||
2] = 2∑D

j=1 λ j and the average
squared distance in directioni is E[(xi

1−xi
2)

2] = 2λi . After whitening these values become 2D and
2, respectively. Let us define the weight of dimensioni, W(i) ∈ [0,1], as

W(i) =
E[(xi

1−xi
2)

2]

E[||x1−x2||2]

Now the ratio between the weight of each dimension before and after whitening is given by

Wbe f ore(i)

Wa f ter(i)
=

λi

1
D ∑D

j=1 λ j
. (13)

In Equation (13) we observe that the weight of each principal dimension increases if its initial
within class variance was lower than the average, and vice versa. When there is high irrelevant
noise along several dimensions, the algorithm will indeed scale down noise dimensions. However,
when the irrelevant noise is scattered among many dimensions with low amplitude in each of them,
whitening will amplify these noisy dimensions, which is potentially harmful. Therefore, when the
data is initially embedded in a high dimensional space, the optional dimensionality reduction in
RCA (Step 2) becomes mandatory.

We have seen in Section 3.3 that FLD is the dimensionality reduction technique which maxi-
mizes the mutual information under Gaussian assumptions. Traditionally FLD is computed from
fully labelled training data, and the method therefore falls within supervised learning. We now
extend FLD, using the same information theoretic criterion, to the case of partial supervision in
the form of equivalence constraints. Specifically, denote bySt andSw the estimators of the total
covariance and the within class covariance respectively. FLD maximizes thedeterminant ratio

max
A∈MK×D

AStAt

ASwAt (14)

by solving a generalized eigenvector problem. The row vectors of the optimal matrix A are the first
K eigenvectors ofS−1

w St . In our case the optimization problem is of the same form as in (14), with
the within chunklet covariance matrix from (1) playing the role ofSw. We compute the projection
matrix using SVD in the usual way, and term this FLD variant cFLD (constraints based FLD).

To understand the intuition behind cFLD, note that both PCA and cFLD removedimensions
with small total variance, and hence reduce the risk of RCA amplifying irrelevant dimensions with
small variance. However, unsupervised PCA may remove dimensions that are important for the
discrimination between classes, if their total variability is low. Intuitively, better dimensionality
reduction can be obtained by comparing the total covariance matrix (used byPCA) to the within
class covariance matrix (used by RCA), and this is exactly what the partially supervised cFLD is
trying to accomplish in (14).

The cFLD dimensionality reduction can only be used if the rank of the within chunklet covari-
ance matrix is higher than the dimensionality of the initial data space. If this condition does not hold,
we use PCA to reduce the original data dimensionality as needed. The procedure is summarized
below in Algorithm 2.
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Algorithm 2 Dimensionality reduction: Step 2 of RCA
Denote byD the original data dimensionality. Given a set of chunklets{Cj}

n
j=1 do

1. Compute the rank of the estimated within chunklet covariance matrixR = ∑n
j=1(|Cj | − 1),

where|Cj | denotes the size of the j’th chunklet.

2. If (D > R), apply PCA to reduce the data dimensionality toαR, where 0< α < 1 (to ensure
that cFLD provides stable results).

3. Compute the total covariance matrix estimateSt , and estimate the within class covariance
matrix usingSw = Ĉ from (1). Solve (14), and use the resultingA to achieve the target data
dimensionality.

7. Online Implementation of RCA

The standard RCA algorithm presented in Section 2 is a batch algorithm which assumes that all
the equivalence constraints are available at once, and that all the data is sampled from a stationary
source. Such conditions are usually not met in the case of biological learning systems, or artificial
sensor systems that interact with a gradually changing environment. Consider for example a system
that tries to cluster images of different people collected by a surveillance camera in gradually chang-
ing illumination conditions, such as those caused by night and day changes.In this case different
distance functions should be used during night and day times, and we wouldlike the distance used
by the system to gradually adapt to the current illumination conditions. An onlinealgorithm for
distance function learning is required to achieve such a gradual adaptation.

Here we briefly present an online implementation of RCA, suitable for a neural-network-like
architecture. In this implementation a weight matrixW ∈ MD×D, initiated randomly, is gradually
developed to become the RCA transformation matrix. In Algorithm 3 we presentthe procedure for
the simple case of chunklets of size 2. The extension of this algorithm to general chunklets is briefly
described in Appendix C.

Algorithm 3 Online RCA for point pairs

Input: a stream of pairs of points(xT
1 ,xT

2 ), wherexT
1 xT

2 are known to belong to the same class.
Initialize W to a symmetric random matrix with||W|| << 1.
At time step T do:

• receive pairxT
1 ,xT

2 ;

• let h = xT
1 −xT

2 ;

• applyW to h, to gety = Wh;

• updateW = W+η(W−yytW).

whereη > 0 determines the step size.

Assuming local stationarity, the steady state of this stochastic process can befound by equating
the mean update to 0, where the expectation is taken over the next example pair(xT+1

1 ,xT+1
2 ). Using

948



MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

the notations of Algorithm 3, the resulting equation is

E[η(W−yytW)] = 0 ⇒ E[I −yyt ] = I −WE[hht ]Wt = 0 ⇒ W = PE[hht ]−
1
2 ,

whereP is an orthonormal matrixPPt = I . The steady stateW is the whitening transformation of
the correlation matrix ofh. Sinceh = 2(x1−

(x1+x2)
2 ), it is equivalent (up to the constant 2) to the

distance of a point from the center of its chunklet. The correlation matrix ofh is therefore equivalent
to the within chunklet covariance matrix. ThusW converges to the RCA transformation of the
input population up to an orthonormal transformation. The resulting transformation is geometrically
equivalent to RCA, since the orthonormal transformationP preserves vector norms and angles.

In order to evaluate the stability of the online algorithm we conducted simulations which con-
firmed that the algorithm converges to the RCA estimator (up to the transformationP), if the gradient
steps decrease with time (η = η0/T). However, the adaptation of the RCA estimator for such a step
size policy can be very slow. Keepingη constant avoids this problem, at the cost of producing a
noisy RCA estimator, where the noise is proportional toη. Henceη can be used to balance this
tradeoff between adaptation, speed and accuracy.

8. Experimental Results

The success of the RCA algorithm can be measured directly by measuring neighborhood statistics,
or indirectly by measuring whether it improves clustering results. In the following we tested RCA
on three different applications using both direct and indirect evaluations.

The RCA algorithm uses only partial information about the data labels. In this respect it is
interesting to compare its performance to unsupervised and supervised methods for data represen-
tation. Section 8.1 compares RCA to the unsupervised PCA and the fully supervised FLD on a
facial recognition task, using the YaleB data set (Belhumeur et al., 1997).In this application of
face recognition, RCA appears very efficient in eliminating irrelevant variability caused by varying
illumination. We also used this data set to test the effect of dimensionality reduction using cFLD,
and the sensitivity of RCA to average chunklet size and the total amount of points in chunklets.

Section 8.2 presents a more realistic surveillance application in which equivalence constraints
are gathered automatically from a Markovian process. In Section 8.3 we conclude our experimental
validation by comparing RCA with other methods which make use of equivalenceconstraints in a
clustering task, using a few benchmark data sets from the UCI repository (Blake and Merz, 1998).
The evaluation of different metrics below is presented usingcumulative neighbor puritygraphs,
which display the average (over all data points) percentage of correctneighbors among the firstk
neighbors, as a function ofk.

8.1 Applying RCA to Facial Recognition

The task here is to classify facial images with respect to the person photographed. In these exper-
iments we consider a retrieval paradigm reminiscent of nearest neighborclassification, in which a
query image leads to the retrieval of its nearest neighbor or its K-nearestneighbors in the data set.
Using a facial image database, we begin by evaluating nearest neighbor classification with the RCA
distance, and compare its performance to supervised and unsupervisedlearning methods. We then
move on to address more specific issues: In 8.1.4 we look more closely at the two steps of RCA,
Step 2 (cFLD dimensionality reduction) and Step 3 (whitening w.r.t.Ĉ), and study their contribu-
tion to performance in isolation. In 8.1.5 the retrieval performance of RCA is compared with the
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Figure 2: A subset of the YaleB database which contains 1920 frontal face images of 30 individuals
taken under different lighting conditions.

algorithm presented by Xing et al. (2002). Finally in 8.1.6 we evaluate the effect of chunklets sizes
on retrieval performance, and compare it to the predicted effect of chunklet size on the variance of
the RCA estimator.

8.1.1 THE DATA SET

We used a subset of the yaleB data set (Belhumeur et al., 1997), which contains facial images of 30
subjects under varying lighting conditions. The data set contains a total of 1920 images, including
64 frontal pose images of each subject. The variability between images of thesame person is mainly
due to different lighting conditions. These factors caused the variability among images belonging to
the same subject to be greater than the variability among images of different subjects (Adini et al.,
1997). As preprocessing, we first automatically centered all the images using optical flow. Images
were then converted to vectors, and each image was represented using itsfirst 60 PCA coefficients.
Figure 2 shows a few images of four subjects.

8.1.2 OBTAINING EQUIVALENCE CONSTRAINTS

We simulated the‘distributed learning’scenario presented in Section 1 in order to obtain equiva-
lence constraints. In this scenario, we obtain equivalence constraints using the help ofT teachers.
Each teacher is given a random selection ofL data points from the data set, and is asked to give
his own labels to all the points, effectively partitioning the data set into equivalence classes. Each
teacher therefore provides both positive and negative constraints. Note however that RCA only uses
the positive constraints thus gathered. The total number of points in chunklets grows linearly with
TL, the number of data points seen by all teachers. We control this amount, whichprovides a loose
bound on the number of points in chunklets, by varying the number of teachers T and keepingL
constant. We tested a range of values ofT for which TL is 10%, 30%, or 75% of the points in the
data set.5

The parameterL controls the distribution of chunklet sizes. More specifically, we show in
Appendix D that this distribution is controlled by the ratior = L

M whereM is the number of classes
in the data. In all our experiments we have usedr = 2. For this value the expected chunklet size is

5. In this scenario one usually obtains mostly ‘negative’ equivalence constraints, which are pairs of points that are
known to originate from different classes. RCA doesnotuse these ‘negative’ equivalence constraints.
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roughly 2.9 and we typically obtain many small chunklets. Figure 3 shows a histogram of typical
chunklet sizes, as obtained in our experiments.6

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120
30% of points in chunkelts

Figure 3: Sample chunklet size distribution obtained using the distributed learning scenario on a
subset of the yaleB data set with 1920 images fromM = 30 classes. L is chosen such that
r = L

M = 2. The histogram is plotted for distributed learning with 30% of the data points
in chunklets.

8.1.3 RCAON THE CONTINUUM BETWEEN SUPERVISED ANDUNSUPERVISEDLEARNING

The goal of our main experiment in this section was to assess the relative performance of RCA as
a semi-supervised method in a face recognition task. To this extent we compared the following
methods:

• Eigenfaces (Turk and Pentland, 1991): this unsupervised method reduces the dimensionality
of the data using PCA, and compares the images using the Euclidean metric in the reduced
space. Images were normalized to have zero mean and unit variance.

• Fisherfaces (Belhumeur et al., 1997): this supervised method starts by applying PCA dimen-
sionality reduction as in the Eigenfaces method. It then uses all the data labelsto compute the
FLD transformation (Fukunaga, 1990), and transforms the data accordingly.

• RCA: the RCA algorithm with dimensionality reduction as described in Section 6, that is,
PCA followed by cFLD. We varied the amount of data in constraints providedto RCA, using
thedistributed learningparadigm described above.

The left panel in Figure 4 shows the results of the different methods. Thegraph presents the
performance of RCA for low, moderate and high amounts of constrained points. As can be seen,
even with low amounts of equivalence constraints the performance of RCA ismuch closer to the
performance of the supervised FLD than to the performance of the unsupervised PCA. With Mod-
erate and high amounts of equivalence constraints RCA achieves neighbor purity rates which are

6. We used a different sampling scheme in the experiments which address the effect of chunklet size, see Section 8.1.6.
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Figure 4: Left: Cumulative purity graphs for the following algorithms and experimental conditions:
Eigenface (PCA), RCA 10%, RCA 30%, RCA 75%, and Fisherface (FLD). The percent-
ages stated for RCA are the fractions of data points presented to the ‘distributed learning’
oracle, as discussed in Section 8.1.2. The data was reduced to dimension 60using PCA
for all the methods. It was then further reduced to dimension 30 using cFLDin the three
RCA variants, and using FLD for the Fisherface method. Results were averaged over 50
constraints realizations. The error bars give the Standard Errors of the Mean (SEMs).
Right: Cumulative purity graphs for the fully supervised FLD, with and without fully
labelled RCA. Here RCA dramatically enhances the performance of FLD.

higher than those achieved by the fully supervised Fisherfaces method, while relying only on frag-
mentary chunklets with unknown class labels. This somewhat surprising result stems from the fact
that the fully supervised FLD in these experiments was not followed by whitening.

In order to clarify this last point, note that RCA can also be used when given a fully labelled
training set. In this case, chunklets correspond uniquely and fully to classes, and the cFLD algorithm
for dimensionality reduction is equivalent to the standard FLD. In this setting RCA can be viewed
as an augmentation of the standard, fully supervised FLD, which whitens theoutput of FLD w.r.t
the within class covariance. The right panel in Figure 4 shows comparative results of FLD with and
without whitening in the fully labelled case.

In order to visualize the effect of RCA in this task we also created some “RCAfaces”, following
Belhumeur et al. (1997): We ran RCA on the images after applying PCA, andthen reconstructed the
images. Figure 5 shows a few images and their reconstruction. Clearly RCA dramatically reduces
the effect of varying lighting conditions, and the reconstructed images of the same individual look
very similar to each other. The Eigenfaces (Turk and Pentland, 1991) method did not produce
similar results.

8.1.4 SEPARATING THE CONTRIBUTION OF THEDIMENSIONALITY REDUCTION AND

WHITENING STEPS INRCA

Figure 4 presents the results of RCA including the semi-supervised dimensionality reduction of
cFLD. While this procedure yields the best results, it mixes the separate contributions of the two
main steps of the RCA algorithm, that is, dimensionality reduction via cFLD (Step 2)and whitening
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Figure 5: Top: Several facial images of two subjects under different lighting conditions. Bottom:
the same images from the top row after applying PCA and RCA and then reconstructing
the images. Clearly RCA dramatically reduces the effect of different lightingconditions,
and the reconstructed images of each person look very similar to each other.

of the inner chunklet covariance matrix (Step 3). In the left panel of Figure 6 these contributions are
isolated.

It can be seen that when cFLD and whitening are used separately, they both provide considerable
improvement in performance. These improvements are only partially dependent, since the perfor-
mance gain when combining both procedures is larger than either one alone.In the right panel of
Figure 6 we present learning curves which show the performance of RCA with and without dimen-
sionality reduction, as a function of the amount of supervision provided to the algorithm. For small
amounts of constraints, both curves are almost identical. However, as the number of constraints
increases, the performance of RCA dramatically improves when using cFLD.

8.1.5 COMPARISON WITH THEMETHOD OFX ING ET AL .

In another experiment we compared the algorithm of Xing et al. (2002) to RCA on the YaleB data
set using code obtained from the author’s web site. The experimental setup was the one described in
Section 8.1.2, with 30% of the data points presented to the distributed learning oracle. While RCA
uses only the positive constraints obtained, the algorithm of Xing et al. (2002) was given both the
positive and negative constraints, as it can make use of both. Results areshown in Figure 7, showing
that this algorithm failed to converge when given high dimensional data, andwas outperformed by
RCA in lower dimensions.

8.1.6 THE EFFECT OFDIFFERENTCHUNKLET SIZES

In Section 5 we showed that RCA typically provides an estimator for the within class covariance
matrix, which is not very sensitive to the size of the chunklets. This was doneby providing a
bound on the variance of the elements in the RCA estimator matrixĈ(n,k). We can expect that
lower variance of the estimator will go hand in hand with higher purity performance. In order to
empirically test the effect of chunklets’ size, we fixed the number of equivalence constraints, and
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Figure 6: Left: Cumulative purity graphs for 4 experimental conditions: original space, RCA with-
out cFLD, cFLD only, and RCA with cFLD (using the Euclidean norm in all cases).
The data was reduced to 60 dimensions using unsupervised PCA. The semisupervised
techniques used constraints obtained by distributed learning with 30% of the data points.
RCA without cFLD was performed in the space of 60 PCA coefficients, whilein the last
2 conditions dimensionality was further reduced to 30 using the constraints. Results were
averaged over 50 constraints realizations. Right: Learning curves–neighbor purity per-
formance for 64 neighbors as a function of the amount of constraints. The performance is
measured by averaging (over all data points) the percentage of correct neighbors among
the first 64 neighbors. The amount of constraints is measured using the percentage of
points given to the distributed learning oracle. Results are averaged over15 constraints
realizations. Error bars in both graphs give the standard errors of themean.

varied the size of the chunkletsS in the range{2−10}. The chunklets were obtained by randomly
selecting 30% of the data (total ofP = 1920 points) and dividing it into chunklets of sizeS.7

The results can be seen in Figure 8. As expected the performance of RCAimproves as the size
of the chunklets increases. Qualitatively, this improvement agrees with the predicted improvement
in the RCA estimator’s variance, as most of the gain in performance is alreadyobtained with chun-
klets of sizeS= 3. Although the bound presented is not tight, other reasons may account for the
difference between the graphs, including the weakness of the Gaussianassumption used to derive
the bound (see Section 9), and the lack of linear connection between the estimator’s variance and
purity performance.

8.2 Using RCA in a Surveillance Application

In this application, a stationary indoor surveillance camera provided shortvideo clips whose begin-
ning and end were automatically detected based on the appearance and disappearance of moving
targets. The database therefore included many clips, each displaying onlyone person of unknown
identity. Effectively each clip provided a chunklet. The task in this case wasto cluster together all
clips in which a certain person appeared.

7. When necessary, the remainingmod(0.3P,S) points were gathered into an additional smaller chunklet.
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Figure 7: The method of Xing et al. (2002) and RCA on the YaleB facial imagedata set. Left:
Neighbor purity results obtained using 60 PCA coefficients. The algorithm ofXing et al.
(2002) failed to converge and returned a metric with chance level performance. Right:
Results obtained using a 30 dimensional representation, obtained by applying cFLD to
the 60 PCA coefficients. Results are averaged over 50 constraints realizations. The error
bars give the standard errors of the mean.
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Figure 8: Left: Mean error rate on all 64 neighbors on the yaleB data setwhen using 30% of the data
in chunklets. In this experiment we varied the chunklet sizes while fixing the total amount
of points in chunklets. Right: the theoretical bound over the ratio between thevariance of
the RCA matrix elements and the variance of the best possible estimator using the same
number of points (see inequality 12). The qualitative behavior of the graphs is similar,
seemingly because a lower estimator variance tends to imply better purity performance.

The task and our approach: The video clips were highly complex and diversified, for several
reasons. First, they were entirely unconstrained: a person could walk everywhere in the scene,
coming closer to the camera or walking away from it. Therefore the size and resolution of each
image varied dramatically. In addition, since the environment was not constrained, images included
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Figure 9: Left: several images from a video clip of one subject. Right: cumulative neighbor purity
results before and after RCA.

varying occlusions, reflections and (most importantly from our perspective) highly variable illu-
mination. In fact, the illumination changed dramatically across the scene both in intensity (from
brighter to darker regions), and in spectrum (from neon light to naturallighting). Figure 9 shows
several images from one input clip.

We sought to devise a representation that would enable the effective clustering of clips, focusing
on color as the only low-level attribute that could be reliably used in this application. Therefore our
task was to accomplish some sort of color constancy, that is, to overcome thegeneral problem of
irrelevant variability due to the varying illumination. This is accomplished by the RCA algorithm.

Image representation and RCA Each image in a clip was represented by its color histogram
in L∗a∗b∗ space (we used 5 bins for each dimension). We used the clips as chunkletsin order to
compute the RCA transformation. We then computed the distance between pairs of images using
two methods:L1 and RCA (Mahalanobis). We used over 6000 images from 130 clips (chunklets) of
20 different people. Figure 9 shows the cumulative neighbor purity overall 6000 images. One can
see that RCA makes a significant contribution by bringing ‘correct’ neighbors closer to each other
(relative to other images). However, the effect of RCA on retrieval performance here is lower than
the effect gained with the YaleB data base. While there may be several reasons for this, an important
factor is the difference between the way chunklets were obtained in the two data sets. The automatic
gathering of chunklets from a Markovian process tends to provide chunklets with dependent data
points, which supply less information regarding the within class covariance matrix.

8.3 RCA and Clustering

In this section we evaluate RCA’s contribution to clustering, and compare it to alternative algorithms
that use equivalence constraints. We used six data sets from the UCI repository. For each data set
we randomly selected a setQP of pairwise positive equivalence constraints (or chunklets of size 2).
We compared the following clustering algorithms:
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a. K-means using the default Euclidean metric and no side-information (Fukunaga, 1990).

b. Constrained K-means + Euclidean metric: the K-means version suggested byWagstaff et al.
(2001), in which a pair of points(xi ,x j) ∈ QP is always assigned to the same cluster.

c. Constrained K-means + the metric proposed by Xing et al. (2002): The metricis learnt from
constraints inQP. For fairness we replicated the experimental design employed by Xing
et al. (2002), and allowed the algorithm to treat all unconstrained pairs ofpoints as negative
constraints (the setQN).

d. Constrained K-means + RCA: Constrained K-means using the RCA Mahalanobis metric learned
from QP.

e. EM: Expectation Maximization of a Gaussian Mixture model (using no side-information).

f . Constrained EM: EM using side-information in the form of equivalence constraints (Shental
et al., 2004), when using the RCA distance metric as the initial metric.

Clustering algorithmsa andeare unsupervised and provide respective lower bounds for comparison
with our algorithmsd and f . Clustering algorithmsb andc compete fairly with our algorithmd,
using the same kind of side information.

Experimental setup To ensure fair comparison with Xing et al. (2002), we used exactly the same
experimental setup as it affects the gathering of equivalence constraintsand the evaluation score
used. We tested all methods using two conditions, with: (i) “little” side-informationQP, and (ii)
“much” side-information. The set of pairwise similarity constraintsQP was generated by choosing
a random subset of all pairs of points sharing the same class identityci . Initially, there areN
‘connected components’ of unconstrained points, whereN is the number of data points. Randomly
choosing a pairwise constraint decreases the number of connected components by 1 at most. In
the case of “little” (“much”) side-information, pairwise constraints are randomly added until the
number of different connected componentsKc is roughly 0.9N (0.7N). As in the work of Xing et al.
(2002), no negative constraints were sampled.

Following Xing et al. (2002) we used a normalized accuracy score, the ”Rand index” (Rand,
1971), to evaluate the partitions obtained by the different clustering algorithms. More formally,
with binary labels (or two clusters), the accuracy measure can be written as

∑
i> j

1{1{ci = c j} = 1{ĉi = ĉ j}}

0.5m(m−1)
,

where 1{}̇ denotes the indicator function(1{True}= 1),1{False}= 0), {ĉi}
m
i=1 denotes the cluster

to which pointxi is assigned by the clustering algorithm, andci denotes the “correct” (or desirable)
assignment. The score above is the probability that the algorithm’s decision regarding the label
equivalence of two points agrees with the decision of the “true” assignmentc.8

Figure 10 shows comparative results using six different UCI data sets. Clearly the RCA met-
ric significantly improved the results over the original K-means algorithms (boththe constrained

8. As noted by Xing et al. (2002), this score should be normalized when the number of clusters is larger than 2. Nor-
malization is achieved by sampling the pairs(xi ,x j ) such thatxi andx j are from the same cluster with probability 0.5
and from different clusters with probability 0.5, so that “matches” and “mismatches” are given the same weight.
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Figure 10: Clustering accuracy on 6 UCI data sets. In each panel, the sixbars on the left correspond
to an experiment with ”little” side-information, and the six bars on the right correspond
to ”much” side-information. From left to right the six bars correspond respectively to
the algorithms described in the text, as follows: (a) K-means over the originalfeature
space (without using any side-information). (b) Constrained K-means over the original
feature space. (c) Constrained K-means over the feature space suggested by Xing et al.
(2002). (d) Constrained K-means over the feature space created by RCA. (e) EM over
the original feature space (without using any side-information). (f) Constrained EM
(Shental et al., 2004) over the feature space created by RCA. Also shown areP–the
number of points,M–the number of classes,D–the dimensionality of the feature space,
andKc–the mean number of connected components. The results were averaged over
20 realizations of side-information. The error bars give the standard deviations. In all
experiments we used K-means with multiple restarts as in done by Xing et al. (2002).

and unconstrained versions). Generally in the context of K-means, we observe that using equiva-
lence constraints to find a better metric improves results much more than using this information to
constrain the algorithm. RCA achieves comparable results to those reported by Xing et al. (2002),
despite the big difference in computational cost between the two algorithms (see Section 9.1).

The last two algorithms in our comparisons use the EM algorithm to compute a generative
Gaussian Mixture Model, and are therefore much more computationally intensive. We have added
these comparisons because EM implicitly changes the distance function over the input space in a
locally linear way (that is, like a Mahalanobis distance). It may therefore appear that EM can do
everything that RCA does and more, without any modification. The histogram bins marked by (e)
in Figure 10 clearly show that this is not the case. Only when we add constraints to the EM, and
preprocess the data with RCA, do we get improved results as shown by the histogram bins marked
by (f) in Figure 10.
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9. Discussion

We briefly discuss running times in Section 9.1. The applicability of RCA in general conditions is
then discussed in 9.2.

9.1 Runtime Performance

Computationally RCA relies on a few relatively simple matrix operations (inversionand square root)
applied to a positive-definite square matrix, whose size is the reduced dimensionality of the data.
This can be done fast and efficiently and is a clear advantage of the algorithm over its competitors.

9.2 Using RCA when the Assumptions Underlying the Method are Violated
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Figure 11: Extracting the shared component of the covariance matrix usingRCA: In this exam-
ple the data originates from 2 Gaussian sources with the following diagonal covariance
matrices: diag(C1) = (ε,1,2) and diag(C2) = (1,ε,2). (a) The original data points
(b) The transformed data points when using RCA. In this example we used allof the
points from each class as a single chunklet and therefore the chunklet covariance ma-
trix is the average within-class covariance matrix. As can be seen RCA clearly down-
scales the irrelevant variability in the Z axis, which is the shared component of the 2
classes covariance matrices. Specifically, the eigenvalues of the covariance matrices
for the two classes are as follows (forε = 0.1): class 1–(3.947,1.045,0.009) before
RCA, and(1.979,1.001,0.017) after RCA; class 2–(3.953,1.045,0.010) before RCA,
and(1.984,1.001,0.022) after RCA. In this example, the condition numbers increased
by a factor of 3.78 and 4.24 respectively for both classes.

In order to obtain a strict probabilistic justification for RCA, we listed in Section 5the following
assumptions:

1. The classes have multi-variate normal distributions.

2. All the classes share the same covariance matrix.

3. The points in each chunklet are an i.i.d. sample from the class.
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What happens when these assumptions do not hold?
The first assumption gives RCA its probabilistic justification. Without it, in a distribution-free

model, RCA is the best linear transformation optimizing the criteria presented in Sections 3-4:
maximal mutual information, and minimal within-chunklet distance. These criteria are reasonable
as long as the classes are approximately convex (as assumed by the use ofthe distance between
chunklet’s points and chunklet’s means). In order to investigate this point empirically, we used
Mardia’s statistical tests for multi-variate normality (Mardia, 1970). These tests (which are based on
skewness and kurtosis) showed that all of the data sets used in our experiments are significantly non-
Gaussian (except for the Iris UCI data set). Our experimental results therefore clearly demonstrate
that RCA performs well when the distribution of the classes in the data is not multi-variate normal.

The second assumption justifies RCA’s main computational step, which uses theempirical aver-
age of all the chunklets covariance matrices in order to estimate the global withinclass covariance
matrix. When this assumption fails, RCA effectively extracts the shared component of all the classes
covariance matrices, if such component exists. Figure 11 presents an illustrative example of the use
of RCA on data from two classes with different covariance matrices. A quantitative measure of
RCA’s partial success in such cases can be obtained from the change inthecondition number(the
ratio between the largest and smallest eigenvalues) of the within-class covariance matrices of each
of the classes, before and after applying RCA. Since RCA attempts to whiten the within-class co-
variance, we expect the condition number of the within-class covariance matrices to decrease. This
is indeed the case for the various classes in all of the data sets used in our experimental results.

The third assumption may break down in many practical applications, when chunklets are auto-
matically collected and the points within a chunklet are no longer independent of one another. As a
result chunklets may be composed of points which are rather close to each other, and whose distribu-
tion does not reflect all the typical variance of the true distribution. In this case RCA’s performance
is not guaranteed to be optimal (see Section 8.2).

10. Conclusion

We have presented an algorithm which uses side-information in the form of equivalence constraints,
in order to learn a Mahalanobis metric. We have shown that our method is optimalunder several
criteria. Our empirical results show that RCA reduces irrelevant variabilityin the data and thus
leads to considerable improvements in clustering and distance based retrieval.

Appendix A. Information Maximization with Non-Invertible Linear
Transformations

Here we sketch the proof of the claim made in Section 3.3. As before, we denote byĈ the average
covariance matrix of the chunklets. We can rewrite the constrained expression from Equation 5 as

1
N

n

∑
j=1

n j

∑
i=1

(x ji −mj)
tAtA(x ji −mj) = tr(AtAĈ) = tr(AtĈA).

Hence the Lagrangian can be written as

log|AΣxA
t |−λ(tr(AĈAt)−1).
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Differentiating the Lagrangian with respect toA gives

ΣxA
t(AΣxA

t)−1 = λĈAt .

Multiplying by A and rearranging terms, we getI
λ = AĈAt . Hence as in RCA,A must whiten

the data with respect to the chunklet covarianceĈ in a yet to be determined subspace. We can now
use the equality in (5) to findλ:

tr(AĈAt) = tr(
I
λ
) =

K
λ

= 1 =⇒ λ = K

=⇒ AĈAt =
1
K

I ,

whereK is the dimension of the projection subspace.
Next, since in our solution spaceAĈAt = 1

K I , it follows that log|AĈAt | = K log 1
K holds for all

points. Hence we can modify the maximization argument as follows:

log|AΣxA
t | = log

|AΣxAt |

|AĈAt |
+K log

1
K

Now the optimization argument has a familiar form. It is known (Fukunaga, 1990) that maximiz-
ing the determinant ratio can be done by projecting the space on the span of the firstK eigenvectors
of Ĉ−1Σx. Denote byG the solution matrix for this unconstrained problem. This matrix orthogo-
nally diagonalizes botĥC andΣx, soGĈGt = Λ1 andGΣxGt = Λ2 for Λ1,Λ2 diagonal matrices. In

order to enforce the constraints we define the matrixA=
√

1
K Λ−0.5

1 G and claim thatA is the solution
of the constrained problem. Notice that the value of the maximization argument does not change
when we switch fromA to G sinceA is a product ofG and another full ranked matrix. It can also be
shown thatA satisfies the constraints and is thus the solution of the Problem (5).

Appendix B. Variance Bound on the RCA Covariance Estimator

In this appendix we prove Inequality 12 from Section 5. Assume we haveN = nk data points
X = {x ji}

n,k
i=1, j=1 in n chunklets of sizek each. We assume that all chunklets are drawn independently

from Gaussian sources with the same covariance matrix. Denoting bymi the mean of chunklet i, the
unbiased RCA estimator of this covariance matrix is

Ĉ(n,k) =
1
n

n

∑
j=1

1
k−1

k

∑
i=1

(x ji −mi)(x ji −mi)
T .

It is more convenient to estimate the convergence of the covariance estimate for data with a
diagonal covariance matrix. We hence consider a diagonalized version of the covariance, and return
to the original covariance matrix toward the end of the proof. LetU denote the diagonalization
transformation of the covariance matrixC of the Gaussian sources, that is,UCUt = Λ whereΛ is
a diagonal matrix with{λi}

D
i=1 on the diagonal. LetZ = UX = {zji}

n,k
i=1, j=1 denote the transformed

data. Denote the transformed within class covariance matrix estimation byĈu(n,k) = UĈ(n,k)U t ,
and denote the chunklet means bymu

i = Umi . We can analyze the variance ofĈu as follows:

var(Ĉu(n,k)) = var[
1
n

n

∑
i=1

1
k−1

k

∑
j=1

(zji −mu
i )(zji −mu

i )
T ]
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=
1
n

var[
1

k−1

k

∑
j=1

(zji −mu
1)(zji −mu

1)
T ]. (15)

The last equality holds since the summands of the external sum are sample covariance matrices of
independent chunklets drawn from sources with the same covariance matrix.

The variance of the sample covariance, assessed fromk points, for diagonalized Gaussian data
is known to be (Fukunaga, 1990)

var(Ĉii ) =
2λ2

i

k−1
; var(Ĉi j ) =

λiλ j

k
; cov(Ĉi j ,Ĉkl) = 0.

Hence (15) is simply

var(Ĉu
ii ) =

2λ2
i

n(k−1)
; var(Ĉu

i j ) =
λiλ j

nk
; cov(Ĉu

i j ,Ĉ
u
kl) = 0.

ReplacingN = nk, we can write

var(Ĉu
ii ) =

2λ2
i

N(1− 1
k)

; var(Ĉu
i j ) =

λiλ j

N
; cov(Ĉu

i j ,Ĉ
u
kl) = 0,

and for the diagonal termŝCu
ii

var(Ĉu(
N
k

,k)ii ) =
2λ2

i

N(1− 1
k)

=
k

k−1
2λ2

i

N
≤

k
k−1

2λ2
i

N−1
=

k
k−1

var(Ĉu(1,N)ii ).

This inequality trivially holds for the off-diagonal covariance elements.
Getting back to the original data covariance, we note that in matrix elements notation Ĉi j =

∑D
q,r=1Ĉu

qrUiqU jr whereD is the data dimension. Therefore

var[Ĉi j (n,k)]

var[Ĉi j (1,nk)]
=

∑D
q,r=1var[Ĉu(n,k)qrUiqU jr ]

∑D
q,r=1var[Ĉu(1,nk)qrUiqU jr ]

≤
∑D

q,r=1
k

k−1var[Ĉu(1,nk)qrUiqU jr ]

∑D
q,r=1var[Ĉu(1,nk)qrUiqU jr ]

=
k

k−1
,

where the first equality holds becausecov(Ĉu
i j ,Ĉ

u
kl) = 0.

Appendix C. Online RCA with Chunklets of General Size

The online RCA algorithm can be extended to handle a stream of chunklets ofvarying size. The
procedure is presented in Algorithm 4.

The steady state of the weight matrixW can be analyzed in a way similar to the analysis in
Section 3. The result isW = PE[1

n ∑n
i=1(x

T
i −mT)(xT

i −mT)t ]−
1
2 whereP is an orthonormal matrix,

and soW is equivalent to the RCA transformation of the current distribution.
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Algorithm 4 Online RCA for chunklets of variable size
Input: a stream of chunklets where the points in a chunklet are known to belong to the same class.
Initialize W to a symmetric random matrix with||W|| << 1.
At time step T do:

• receive a chunklet{xT
1 , ...,xT

n} and compute its meanmT = 1
n ∑n

i=1xT
i ;

• computen difference vectorshT
i = xT

i −mT ;

• transformhT
i usingW, to getyT

i = WhT
i ;

• updateW = W+η∑n
i=1(W−yT

i (yT
i )tW).

whereη > 0 determines the step size.

Appendix D. The Expected Chunklet Size in the Distributed Learning Paradigm

We estimate the expected chunklet size obtained when using the distributed learning paradigm in-
troduced in Section 8. In this scenario, we use the help ofT teachers, each of which is provided with
a random selection ofL data points. Let us assume that the data containsM equiprobable classes,
and that the size of the data set is large relative toL. Define the random variablesx j

i as the number of
points from classi observed by teacherj. Due to the symmetry among classes and among teachers,
the distribution ofx j

i is independent ofi and j, thus defined asx. It can be well approximated by a
Bernoulli distributionB(L, 1

M ), while considering onlyx≥ 2 (sincex = 0,1 do not form chunklets).
Specifically,

p(x = i|x 6= 0,1) =
1

1− p(x = 0)− p(x = 1)

(

L
i

)

(
1
M

)i(1−
1
M

)L−i i = 2,3, ....

We can approximatep(x = 0) andp(x = 1) as

p(x = 0) = (1−
1
M

)
L

≈ e−
L
M , p(x = 1) =

L
M

(1−
1
M

)
L−1

≈
L
M

e−
L
M .

Using these approximations, we can derive an approximation for the expected chunklet size as
a function of the ratior = L

M :

E(x|x 6= 0,x 6= 1) =
L
M − p(x = 1)

1− p(x = 0)− p(x = 1)
'

r(1−e−r)

1− (r +1)e−r .
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