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Abstract

Recently, Semi-Supervised Learning (SSL) has shown
much promise in leveraging unlabeled data while being pro-
vided with very few labels. In this paper, we show that ig-
noring the labels altogether for whole epochs intermittently
during training can significantly improve performance in
the small sample regime. More specifically, we propose to
train a network on two tasks jointly. The primary classifica-
tion task is exposed to both the unlabeled and the scarcely
annotated data, whereas the secondary task seeks to clus-
ter the data without any labels. As opposed to hand-crafted
pretext tasks frequently used in self-supervision, our cluster-
ing phase utilizes the same classification network and head
in an attempt to relax the primary task and propagate the in-
formation from the labels without overfitting them. On top
of that, the self-supervised technique of classifying image
rotations is incorporated during the unsupervised learning
phase to stabilize training. We demonstrate our method’s
efficacy in boosting several state-of-the-art SSL algorithms,
significantly improving their results and reducing running
time in various standard semi-supervised benchmarks, in-
cluding 92.6% accuracy on CIFAR-10 and 96.9% on SVHN,
using only 4 labels per class in each task. We also notably
improve the results in the extreme cases of 1,2 and 3 labels
per class, and show that features learned by our model are
more meaningful for separating the data.

1. Introduction

In recent years we have seen huge improvement in the
performance of deep learning methods in various computer
vision tasks. However, most models require large amounts
of annotated data. Collecting this data is a tedious and ex-
pensive process. Moreover, learning from so many labels is
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Figure 1: Our method iterates between two phases. In the first
phase we train our model with the available labeled and unlabeled
data points using a semi-supervised learning algorithm. In the sec-
ond phase we train the same model to cluster all the data points,
without using any labels.

very different from the way that we as humans learn, and
from the way we perceive intelligence. Therefore, it seems
desirable, in our journey towards strong Al, to develop mod-
els that rely less on data annotated by humans, and are ca-
pable of extracting features in an unsupervised manner.

Semi-Supervised Learning (SSL) is an attempt to tackle
this issue and bridge the gap between supervised and unsu-
pervised learning. The typical setting of the problem is that
we are given a small amount of labeled data and a possi-
bly large amount of unlabeled data, where both are sampled
from the same or similar distributions. Most techniques de-
rive an objective which is split into two separate terms for
labeled and unlabeled data [32, 29]. In this way, every gra-
dient step is influenced by the labels. [25] is unusual in that
respect, as their method iterates between supervised learn-
ing with only labeled data, and unsupervised learning with
only unlabeled data. However, their unsupervised stage re-
lies exclusively on fixed pseudo-labels obtained in the su-



pervised stage. Hence, this stage can be considered ’super-
vised learning with noisy labels’.

In this paper, we wish to benefit from real unsupervised
learning, undistracted by a small number of possibly un-
characteristic training points, within the SSL framework.
The approach is illustrated in Fig. 1. We start by describ-
ing a clustering algorithm that can be easily integrated with
any deep SSL method. This algorithm serves as a secondary
task to the principal classification task. Unlike [25], the
pseudo labels (targets) may be propagated from the real la-
bels seen during classification, but they are likely to change
during this clustering phase. Also differing from some self-
supervised auxiliary tasks used in [2, 32], we use the exact
same architecture (network and head) for clustering. Our
main goal is to add to the learning protocol a phase which
does not depend on the labels. When learning the secondary
task, the goal is to separate the data into clusters without
assigning names to those clusters. At the same time, self-
supervision [15] is used to stabilize and accelerate training
during the clustering phase.

Our main contributions in this paper are the following:

* Devise a new approach for semi-supervised learning,
which is based on solving an unsupervised clustering
task together with a classification task.

» Show how realizing this approach by integrating a new
deep clustering algorithm with three existing SSL algo-
rithms can boost their performance and surpass state-of-
the-art results on 3 benchmark datasets.

2. Related Work

In this work we employ several methods from various
fields, including deep clustering, self-supervision and semi-
supervised learning. We therefore review the most signifi-
cant recent developments in each of those fields.

2.1. Deep Clustering

The task of unsupervised clustering is a long-standing
problem and a highly challenging one, especially when it
meets the high-dimensionality of images. Classical algo-
rithms, such as k-means [ 18] and Gaussian Mixture Models
(GMM) [4], struggle in this domain as the raw data is not
very informative, and thus the need for succinct and mean-
ingful representation of images is critical. In recent years,
deep clustering frameworks have become increasingly com-
petent in solving this task. Typically, these models jointly
learn image features alongside cluster assignments by train-
ing a deep network with some clustering loss in an end-to-
end fashion. The coupling of learning image features and
clusters together allows the deep network to better adapt its
image features to the task of clustering.

In Deep Embedded Clustering (DEC) [26], an encoder
network is first initialized by pre-training on a reconstruc-

tion task alongside a decoder (i.e an auto-encoder) which is
afterwards discarded. Then, cluster centroids in the embed-
ding space are iteratively computed and refined until con-
vergence. Joint Unsupervised Learning (JULE) [30] trains a
model in an end-to-end fashion by iteratively merging clus-
ters of deep representations and updating the network’s pa-
rameters in a hierarchical fashion. Recently, Invariant Infor-
mation Clustering (IIC) [17] proposed a novel information-
theory approach for clustering, in which they maximize the
mutual information between deep embeddings obtained by
two different random augmentations applied to the same im-
age, and rely on the natural characteristics of the mutual
information loss to produce a clustering of the data.

2.2. Self-Supervised Learning

Self-supervised learning is an approach to learning in an
unsupervised manner by solving a pretext supervised task.
The supervisory signals are gathered automatically from the
data without the need for manual labeling. The task is de-
signed in a way that implicitly requires learning of useful
image representation, e.g. predicting the relative position of
patches in an image [ 3], or solving jigsaw puzzles [24]. A
more recent method [15] predicts image rotations (RotNet)
and has also been used as an auxiliary task to stabilize and
improve training in semi-supervised [32] and image gener-
ation tasks [8]. Similalry, our method also employs RotNet
for this purpose.

2.3. Semi-Supervised Learning

Semi-supervised learning (SSL) refers to a family of al-
gorithms aimed at learning from both labeled and unlabeled
data. Thanks to the relative simplicity of collecting big un-
labeled datasets without manual labeling, the field has seen
an increasing interest in the last few years. As a result,
the performance gap between supervised and unsupervised
methods has been consistently diminishing, with the num-
ber of labels used to achieve comparable results getting con-
siderably smaller. Given the vast amount of techniques pro-
posed in the literature, we review only the latest and most
influential works using deep networks, and refer the reader
to [7] for a comprehensive survey.

Most deep learning approaches revolve around the two
fundamental concepts of entropy minimization and consis-
tency regularization. An intuitive assumption is that the de-
cision boundaries of a classifier should not pass in highly
dense areas. Minimizing the entropy of a model’s predic-
tion on unlabeled data is a common approach to facilitate
this heuristic. It can be done explicitly [16] or quite often
implicitly by psuedo-labeling [21, 25, 28], a method that
assigns an artificial label to an unlabeled image and trains
the network to predict that label. Consistency regulariza-
tion refers to the assumption that small perturbations to the
data should not affect its semantics, and hence the label.



It is reasonable then to force the model to output consis-
tent predictions to all perturbed versions of the same sam-
ple. Consequently, a lot of recent research makes use of
complex augmentation strategies [10, 11, 2, 29]. FixMatch
[28], which is the most relevant to our work, combines both
approaches and will be thoroughly discussed in Section 3.2.

3. Proposed Method

In this section we present an SSL algorithm that al-
ternates between two phases: unsupervised clustering and
semi-supervised classification. The method is designed es-
pecially to perform well in the very-few-labels scenario.

As the SSL building block we use in our experiments a
variety of recent state-of-the-art algorithms, including Fix-
Match [28] which is used in most of the experiments, as
well as MixMatch [3] and UDA [29]. Our main goal is to
equip them with an additional unsupervised mechanism, in
order to reduce their susceptibility to outliers in the small
labeled sample. To this end we describe an effective unsu-
pervised deep clustering method. This building block can
also be replaced in order to improve performance.

We start by describing each component separately, and
then describe their integration into a single coherent model.

3.1. Unsupervised Clustering

In a typical supervised classification setting we are given
pairs of images and labels {x;, y; }7_;, and train a parame-
terized model fy by solving:
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where £ is some loss function. In the setting of unsupervised
clustering, where ground truth labels y1, ..., 4, are not avail-
able, we can attempt to learn them alongside the model’s
parameters:
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) oin ;K(fe(m vi)- @)
Without additional constraints, this optimization proce-
dure is prone to suffer from mode collapse, where all images
are assigned the same label y; = --- = y,,. To overcome
this susceptibility, we add a constraint to the optimization
formulation that explicitly prevents this from happening:
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Here K denotes the number of classes in the dataset and «
is a hyper-parameter. Eq. 3 guarantees that each cluster has
a minimal number of images assigned to it.

In order to solve this optimization problem, we adapt a
similar approach to the one taken in [5], where the task of
representation learning is addressed. In [5], the problem
of feature collapse is tackled by fixing static feature vec-
tors {y; }7_, at the beginning of training. Throughout the
training, the algorithm learns the model’s parameters and a
one-to-one mapping P : [n] — [n] from images {z;}" ; to
those fixed targets.

In our case, we are interested in clustering the data, and
hence it is reasonable to set the targets to be one-hot vectors
in R*, which we denote by e, ..., e;. To enforce (3), the
targets are set to 7' = {y;|Vk € [K], >0 | 1y,—c, = a e},
with oz target instances per cluster. Before training be-
gins, each target is randomly assigned to an image in the
dataset. Note that some images may not be paired up with a
target as there might be more images than targets.

The optimization problem is solved stochastically one
mini-batch at a time, where each iteration consists of two
steps. Given a mini-batch X;, = {z},...,z;} C X of b
images and their current targets 7, = {t},...,t.} C T
(b > ¢), the first step finds the best assignment of targets to
images, denoted by P* : [c] — [b], while the network’s pa-
rameters are kept fixed. This is accomplished by minimiz-
ing the following objective with the Hungarian method [20]:

Pt = arg;ninz 1 fo(@p(sy) — till3- )
i=1

Recall that not all images are necessarily assigned a tar-
get. Among the unassigned images, only those with confi-
dence exceeding a certain threshold are assigned to pseudo-
targets. A similar approach is adopted in [28, 6]. For an
unassigned image z), to be considered confident, we require
that || fo(2},) — €arg max fo (|15 < p, Where p is a hyper-
parameter. In this case, the pseudo-target assigned to ), is
Uk = Carg max fo(z})"

In the second step of the optimization scheme, we update
the model’s parameters with a gradient step, which mini-
mizes the distance of the model’s outputs from the targets
or pseudo-targets found in the first step. Specifically, if we
denote the unassigned confident images by C, and the batch
images being processed by S = I'm(P*) U C, then in the
second step each image in S is augmented r times with a
stochastic function g, where all r versions of the same im-
age are matched to the same target. This is formulated as
minimizing the following objective w.r.t. §:

Lo= g DX e ~al ©
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where 7; is either the target or the pseudo-target of image
x}. The objective is minimized via stochastic gradient de-
scent. Note that unassigned images with low confidence are
ignored and do not influence the optimization. As in [5], we



implement fy as a ConvNet and normalize its output such
that || fo(z)|]2 = 1.

To further enhance the representation capabilities of the
model, which may in turn facilitate better clustering, we
train the same model on an additional auxiliary task. Specif-
ically, we employ the self-supervised task of predicting im-
age rotations (RotNet) [15], as it has a proven record of effi-
ciently improving ConvNets representations in a variety of
tasks [32, 8, 14]. We do this by feeding the penultimate
layer of fy into another head, which is used to generate the
rotation predictions for the RotNet task.

The full clustering algorithm is detailed below in Alg. 1.

Algorithm 1 Unsupervised Clustering

INPUT: X = {x;}} , - unlabeled dataset
fo - convnet with two heads and parameters 6
K - number of clusters
g - stochastic augmentation function
A; - learning rate at epoch ¢
r - number of times ¢ is applied to an image
« - ratio of dataset that will have targets
p - maximal distance to be considered confident

T« ]
for k=1 to K do
for i=1to a7 do
append ej, to T' > ey, is the kth unit vector in R¥
end for
end for
Vi € [an]  A(z;) = TVi]
for i=1...epochs do
for j=1...iters do
sample a batch ({«/}°_;, {t/}¢_,)
compute P* with Eq. 4
Vi€ [c] A(xp-s)) =t; > update assignments
update the parameters with gradient step of Eq. 5:

> initialize targets

> initialize assignments

>b>c¢

00— XNVl

end for

for j=1...iters do
sample a batch X}
vd € {0°,90°,180°,270°}, rotate X}, d degrees
update parameters with a gradient step of the
cross-entropy loss L,.:

0 60—X\VoLl,

end for
end for

3.2. Semi-Supervised Classification

Semi-supervised classification is carried out in most of
our experiments by adopting the FixMatch method, as it
currently yields state-of-the-art results when relying on a
small labeled sample. FixMatch combines two heuristics
that are commonly used in SSL, consistency regularization
and pseudo-labelling. These two heuristics are expressed as
part of the loss function applied to unlabeled data during the
training of a neural network, while labeled data is used to
optimize the standard cross-entropy loss.

Formally, given a batch of b images X = {x1,...,2}
and their labels Y = {yi1,...,ys}, and another batch of
b unlabeled images U = {uz, ..., uy }, FixMatch predicts
the class distribution of the network’s output on a weakly-
augmented expansion of the unlabeled batch, and uses these
predictions as hard pseudo-labels for a strongly-augmented
expansion of the same images. Thus, if we denote the net-
work by fp and the stochastic weak and strong augmenta-
tion functions by g and ¢ respectively, the pseudo-label of
image u; becomes y; = max(fp(g(x;)), and the loss term
on the unlabeled batch can be written as:

1 v , /
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Above, H denotes the cross-entropy loss and 7 denotes a
hyper-parameter that determines the threshold confidence
above which the image will be considered in the update of
the network’s parameters (similar to p defined above). The
loss on labeled data is simply:

L, =

S| =

b
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and the total loss is a combination of them both: £,+ A\, L.,
where ), denotes a hyper-parameter balancing the weights
of the two terms.

The weak augmentations used in the algorithm include
the standard flip and shift transformations. First, the im-
ages are flipped horizontally with 50% probability, and then
they are randomly translated by up to 12.5% vertically and
horizontally. As strong augmentations, two variants of Au-
toAugment [10] are used, RandAugment [! 1] and CTAug-
ment [2]. Both are followed by Cutout [12].

3.3. Integrated Method

The basic idea underlying our method is that if the num-
ber of labels is small, it benefits a classification algorithm to
occasionally refrain from taking the labels into account. To
achieve this goal, our method alternates traditional semi-
supervised training epochs with full epochs that optimize
the unsupervised loss in (5) while ignoring the labels. This



Algorithm 2 Boosted SSL

INPUT: U = {u;}?_; - unlabeled dataset
(X,Y) = {z;,y:}I", - labeled dataset
SSL_ALGO - some deep SSL algorithm
C_ALGO - our clustering algorithm from 1
fo - convnet with two heads and parameters €
g - stochastic augmentation function
s j - learning rate at iteration 4, epoch j
r - number of times ¢ is applied to an image
« - ratio of dataset that will have targets
p - maximal distance to be considered confident

for i=1...iters do
for j=1...e; do
run SSL_ALGO(X,Y, U, fy) for one epoch
end for
for j=1...e5 do
run C_ALGO(U, ¢, fg,9, M j, 7, @, p) for one
epoch > ¢ is the number of classes
end for
end for

design aims to learn meaningful features, which can com-
pensate for the shortage of labels and help the model gen-
eralize better. As a result, the model is less susceptible to
overfitting the few labeled datapoints, especially when they
do not agree well with the total data distribution.

Specifically, we use the same network architecture and
weights to solve the two different tasks described above
jointly. To this end the algorithm alternates between Fix-
Match epochs and clustering epochs. We also perform sev-
eral RotNet warmup epochs, as this has proven useful for
accelerating the learning.

Given the information propagated from the labels dur-
ing the semi-supervised phase, clustering can be seen as a
surprisingly easier task that attempts to separate the data
without giving names to the different clusters thus created.
Along the way, the mini-batch permutation optimization
gives the network a chance to swiftly switch the targets of
images whose confidence level is too low. Then, in the next
supervised phase, the algorithm tries again to give those
clusters names and refine the boundaries between them.
This cycle is repeated until convergence.

Alg. 2 summarizes the method. We make the code avail-
able in the Supplementary Material. In the next section,
we show its effectiveness in semi-supervised learning with
a small labeled sample. In these experiments, the semi-
supervised step is realized with more out-of-the-box SSL
algorithms for comparison.

4. Experiments

We evaluated our method on three common SSL bench-
marks, see Table 1. Unless stated otherwise, the experi-
ments were performed with FixMatch as the SSL module.

Name Classes  Train/Test Size Dimension
CIFAR-10 [19] 10 50000 / 10000 32x32x%x3
SVHN [23] 10 73257 126032 32x32x3
STL-10 [9] 10 5000 / 8000 96 x 96 x 3

Table 1: Datasets used in our experiments. For STL-10, the 100K
extra unlabeled images were used as well.

4.1. Implementation Details

In all of the experiments we used the WideResNet
(WRN) architecture [31], replicating the setup described
in [28]. More specifically, for the CIFAR-10 and SVHN
datasets we used WRN-28-2, and for STL-10 we used
WRN-37-2. In the SSL phase, we kept the exact same
hyper-parameters as in the original SSL algorithm being
employed, while for the clustering phase, the learning rate
and weight decay were reduced to 0.01 and 0.0001 respec-
tively (from 0.03 and 0.0005 in FixMatch). The clustering
hyper-parameter p was set to 0.2, and the a hyper-parameter
was set to 1 for Cifar-10, and 0.6 for SVHN and STL-10.
As in most other contemporary SSL methods, we stored and
evaluated the model with exponential moving average of the
weights over the training and a decay of 0.999.

Image augmentation: during the SSL phase, we took
care to always apply the exact same augmentations as used
in the original SSL method used to realize the SSL phase.
Specifically in the experiments with FixMatch, we used
Control Theory Augment [2] that achieved the best results
in most scenarios. In the unsupervised phase, we used the
customary flip followed by crop, after the application of
random color jitter to each pixel. We used the same flip
and crop transformation in both phases: horizontal flip with
probability 0.5, followed by cropping the mirror padded im-
age to the original size.

Unless otherwise mentioned, we trained our model for
200 iterations, each comprising multiple passes over the
data in the SSL phase (10 for Cifar-10 and 5 for all other
datasets), followed by one pass in the clustering phase.

In all the experiments whose results are reported below,
in order to ensure a fair comparison, we used the exact same
partitions into labeled and unlabeled data as used in [28].
Therefore, whenever we present results while replicating
experiments reported in [28], we use the results reported
there for all the methods but our own. When using different
existing algorithms, we first made sure that our implemen-
tation of those methods yielded comparable results to those



reported in the original manuscripts, in order to avoid run-
ning all the various experiments anew.

4.2. Results
Classification Results with FixMatch

In Table 2, we report the results of our method when applied
to the three datasets used in our study, with various amounts
of labels. We ran the algorithm with 5 different partitions,
the exact same partitions used in [28]. Due to the large vari-
ance in the 40 labels setting, we repeated the experiment 3
times for each partition. Hence, the standard deviation re-
ported in our results is the standard deviation (STD) of the
means over the different partitions. As expected for such
small partitions, it is rather large.

As can be seen in Table 2, our method is very effective in
the very small sample regime with 4 labels per class, where
its relative advantage over the alternative methods is quite
high. Its added value is less pronounced when using a total
of 250 labels. Still, when learning to classify the more chal-
lenging STL-10 dataset with a setting identical to the one
described in [28]—we used the same 5 folds of 1000 labeled
images each, and the additional 100K unlabeled images—
our method once again outperforms all the results reported
in [28].

Finally, in order to push our method to its limit, we ex-
perimented with even fewer labels: 10, 20, 30, and also
100 - an intermediate number between 40 and 250. This
very small sample regime is not systematically investigated
in [28]. The results for these experiments are presented
in Fig. 2, as well as a detailed per-partition results for the
20-labels CIFAR-10 experiment in Fig. 3. Clearly, as long
as the number of labeled points is smaller than 250, our
method is quite beneficial.

Clustering Accuracy Score

An interesting advantage of our method is demonstrated in
Fig. 4. The accuracy shown there is the clustering accu-
racy score, which is traditionally computed as the classifica-
tion accuracy of the best permutation of class labels, when
uniquely matched with the different clusters. More pre-
cisely, if our test images and their corresponding labels are
given by ({z;}™,,{y:}™,), and the model’s predictions
are given by {g;}7,, then the clustering accuracy score is
defined as:

m

max  — 31y = P(5), )

P: [c]—[c) M Pt
where P denotes a permutation over the c possible classes.
Note that while the classification accuracy for the exper-
iments with 10 and 20 labels may seem low, the data is still
clustered very well by our model. Even with one label per

class, the model reaches a mean clustering accuracy of over
85%, and the best partition achieves mean accuracy of over
90%. At the same time, we see in Fig. 2 that the mean
classification accuracy is only 54.3%. The gap in accu-
racy may be large, but it resides solely in the naming of the
clusters. Conversely, this cannot be said about the predic-
tions obtained by FixMatch alone. There, the gap between
classification accuracy and clustering accuracy is consider-
ably smaller, which means that FixMatch doesn’t succeed in
separating the classes in the extreme small sample regime.
With 100 labeled examples, the classification and clustering
accuracy converge to the same value for both methods.

In Fig. 5 we show two partitions from CIFAR-10, each
with 10 labels. In one partition there is a big gap between
classification accuracy and clustering accuracy, because the
model confused the labels of 3 clusters as shown by the ar-
rows. In the other partition, the model succeeded in finding
the right permutation, and hence achieved 91% accuracy in
both classification and clustering.

Bridging this gap between classification accuracy and
clustering accuracy with so few labels is a hard problem.
We investigated a few heuristics in order to identify ”good”
permutations during or after training, but more effort is
needed. In Fig. 6 we show the results when employing one
such heuristic. After training is completed, we rotate the la-
beled images (in four orientations as in RotNet) and use the
average prediction in order to find the & best permutations
with Murty’s algorithm [22]. We use rotated images be-
cause the trained model is already (over-)fitted to the small
labeled sample. Note that the permutation which achieves
the best performance, and which defines the clustering ac-
curacy, always lies within the 100 best permutations (out
of 10! possible permutations) according to this score in the
experiments with 20 and 30 labeled examples.

Running Time Comparison

Another advantage of our method is its efficiency with re-
spect to running time. As mentioned in Section 4.1, the
reported results are obtained after 200 iterations of our
method. This implies 2000 passes through the whole data,
plus another 200 passes for clustering and 200 passes for
RotNet. In FixMatch, with randomly sampled batches,
the total number of semi-supervised batches processed to
achieve the published results approaches ~1M batches,
while our method processes ~220K batches to achieve the
results shown above. Even though each clustering epoch
takes a bit longer than a FixMatch epoch, due to the ex-
pensive assignment problem, the total running time of our
method adds up to roughly 30% of the running time needed
by FixMatch when left on its own. Similar observations
hold for the other SSL algorithms, which are compared with
our method next.
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Figure 2: Classification accuracy, comparing our method to FixMatch with CTA, using identical protocols. Left: CIFAR-10, right: SVHN.
The numbers inside the columns denote the mean accuracy across different partitions and runs.

CIFAR-10 STL-10 SVHN

Method 40 labels 250 labels 1000 labels 40 labels 250 labels

II-Model - 54.26 + 3.97 26.23 £ 0.82 - 18.96 +1.92
Pseudo-Labeling - 49.78 £ 0.43 27.99 £ 0.80 - 20.21 +£1.09
Mean Teacher - 32.32+£2.30 21.434+2.39 - 3.57+0.11
MixMatch 47.54 +£11.50 11.054+0.86 10.41 +0.61 42.55+14.53 3.98 £0.23
UDA 29.05 £+ 5.93 8.82 +1.08 7.66 £0.56 52.63 +£20.51 5.69 +2.76
ReMixMatch 19.10 +9.64 5.44 4+ 0.05 5.23 +0.45 3.34 +0.20 2.92 +0.48
FixMatch (RA) 13.81 +£3.37 5.07+0.65 7.98+1.50 3.96 +2.17 2.48 +0.38
FixMatch (CTA) | 11.39+£3.35 5.07+0.33 5.17+0.63 7.65 £ 7.65 2.64 £ 0.64
Ours | 7.39 +£0.61 5.514+0.25 4.78 £0.29 3.09 +0.54 2.30 £ 0.03

Table 2: Error rates for the 3 datasets used in our study: CIFAR-10, STL-10 and SVHN. Results are reported for varying amounts of labels,

denoting the total number of labeled points from all classes.

Other SSL algorithms

As explained in Section 3, our approach is general in the
sense that it can use any clustering algorithm and any SSL
method to address the challenging SSL problem of classifi-
cation with small labeled sample. In this section we show
that interlacing our proposed clustering method with two
other successful SSL methods improves their outcome, in a
similar way to the previous results with FixMatch. Thus, in
Table 3 we show how our approach boosts the performance
of MixMatch [3] and UDA [29]. These experiments were
conducted on CIFAR-10 with 40 labels, using the same 5
partitions as in all the other experiments. Each partition was
evaluated once. As can be seen, UDA combined with our
clustering mechanism almost closes its initial gap against
FixMatch, when both methods use RandAugment as the
generator of strong augmentations (this was the augmen-

tation used by the original method).

| Method | ErrorRate |
MixMatch 47.54 £11.50
MixMatch + Clustering | 35.37 £ 6.01
UDA 29.05 + 5.93
UDA + Clustering 14.37 £ 3.85

Table 3: Error rates of MixMatch (top) and UDA (bottom), with
and without clustering, trained on CIFAR-10 with 40 labeled ex-
amples.

4.3. Ablation Study

We test the contribution of two major components of the
proposed method: clustering and RotNet, using CIFAR-10
with 40 labeled examples. Table 4 summarizes the results.
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Figure 4: Clustering accuracy for the same experiment, the results
of which are reported in Fig. 2.
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Figure 5: Two different partitions of CIFAR-10 with one label per
class are shown above. Given the top partition, our model found
the wrong permutation as illustrated with blue arrows. This error
led to the gap between classification accuracy of 67.6% and clus-
tering accuracy of 92.5%. Given the bottom partition, our model
found the optimal permutation and achieved 91.0% accuracy in
both classification and clustering.

As before, each of the 5 partitions used in the initial exper-
iments is learned 3 times independently. We can see that
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Figure 6: Top-k classification accuracy for CIFAR-10 with 10, 20
and 30 labels. k denotes the number of permutations considered.

RotNet alone does not improve the results, nor does it de-
grade them. However, without RotNet the clustering phase
is far less stable, with a detrimental effect on the final classi-
fication outcome. In both cases, we observed a much higher
variance in performance.

| Method | Error Rate |
FixMatch 11.39 +3.35
FixMatch + RotNet 11.55 £ 2.98
FixMatch + Clustering | 12.15 £ 3.08
Our Method 7.39 £0.61

Table 4: Ablation study on CIFAR-10 with 40 labeled examples.

5. Summary and Discussion

Motivated by the desire to reduce the reliance on an-
notated data as much as possible, we propose a new ap-
proach to semi-supervised learning, which is designed to
reduce overfit when very few labels are available. The pro-
posed method alternates between an unsupervised cluster-
ing phase that ignores the labels in the training data, and
a semi-supervised classification phase that makes full use
of the training labels. To this end, we propose a new deep
clustering algorithm. We then demonstrate the effectiveness
of the general approach by plugging into it existing SSL
algorithms, achieving significantly improved performance
and reduced running time. When the recent FixMatch algo-
rithm is plugged in as the SSL module, we improve state-
of-the-art results on 3 benchmarks typically used to evaluate
SSL algorithms. The proposed approach is general, in that
both the SSL and the clustering modules can be replaced,
although in this work we experimented with a single clus-
tering method.

From a broader perspective, our approach can take ad-
vantage of curriculum learning [1], as one might look for



means to schedule the supervised and unsupervised phases
in a more sophisticated manner during training. It can also

benefit from active learning [

], when seeking the best per-

mutation between labels and clusters in the course of learn-
ing, which is especially tricky when the number of labeled
points per class is very small. Under the active learning
framework, where the learner can opt for a specific label of
interest, we can adjust the permutation gradually by clus-
tering the data first, subsequently asking the user to provide
labels for each cluster’s centroid. This way, in each round of
communication the permutation can be tuned with less than
one additional label per class, as only labels from uncertain
clusters will be requested.
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