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Thesis Outline

Proteins play major and diverse roles in nearly all activities that take place within a living cell. A
protein molecule is a linear polymer of amino acids joined by peptide bonds in a specific sequence.
This sequence is encoded in the DNA of the cell in protein coding genes. The genes are transcribed
from DNA to RNA, which is then translated to form the linear amino acid sequence. Proteins
fold into specific three dimensional conformations. Most proteins perform their task, or tasks,
through a combination of their specialized conformation and the physico-chemical properties of
their constitutive amino acids.

Protein sequences can be easily determined these days, either directly using the protein molecule
itself, or, more often, indirectly by sequencing the encoding genes. However, the structure of a
protein is hard to observe experimentally, with current technology. Indeed, the structures of only
a fraction of the known proteins has been solved to date. Given a solitary protein sequence, we
also lack the capability, currently, of deducing de novo the conformation it adopts. And without
a good structural model, it is difficult to speculate the functional role of the protein, which is our
ultimate goal.

Different protein sequences both within a single organism, and between different organisms
share noticeable similarities. Indeed the known proteins can be organized in a hierarchical manner,
based on apparent sequence, structural and functional conservation. With many genome sequencing
efforts spanning the globe, multitudes of novel and hypothetical genes are being discovered on a
daily basis. Close to one million potential protein sequences are known to date, deeming careful
manual analysis of this ever-growing set nearly impossible.

It is the goal of this thesis to present novel computational tools for the analysis of newly
discovered protein sequences in several related aspects: Detection of the functional units, called
domains, from which a protein is composed. Assignment of each such domain to a family of related
proteins, all having instances of the same domain. And finally, assisting in fine-scale comparison
of known protein sub-families that share very high sequence similarity, and yet perform somewhat
different functions.

The body of this thesis focuses on the exploration and exploitation of Markovian dependencies
in related protein sequences. Through the study and modeling of these dependencies,

• We show that a stationary variable memory Markov model (Ron et al., 1996) can capture
the notion of a protein sequence family (Bejerano and Yona, 1999). This model is learned
from a seed of whole sequences of family members. The input sequences are not aligned, nor
does the algorithm attempt to align them. The resulting model can then accurately assign
family membership for novel sequences (Bejerano, 2003a). A library of such models is shown
to perform as well as the widely used, but more computationally demanding hidden Markov
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models, in parsing novel multi-domain sequences into their known domains, (Bejerano and
Yona, 2001).

• The computational complexity of training and prediction using these model are optimized to
linear time and space requirements using novel data structures and algorithms (Apostolico
and Bejerano, 2000a). This effort is crucial to allow us to scan the ever-growing repositories
of potential protein sequences for matches to a novel sequence. It also opens the way, in
terms of computational complexity, to more global organizational efforts of the entire known
protein space (Apostolico and Bejerano, 2000b).

• The variable memory Markov models are then used to segment a set of unlabeled, unaligned
complete protein sequences into their constituent domains (Bejerano et al., 2001). In order to
achieve this much harder goal, a novel information theoretic principled clustering algorithm
is developed (Seldin et al., 2001). Again, no alignment of the input sequences is attempted
during the process. As a result, instances of the same domains can be detected even when
appearing in different combinations and ordering in the input set sequences.

• Finally, we devise a discriminative framework for multi-classification of protein sequences
using these Markovian models (Slonim et al., 2002). This approach results in much smaller,
specialized models, whose selected features also offer possible insights into functionally and
structurally important residues in the context of protein sub-families (Slonim et al., 2003).

Also included in the form of an appendix to the thesis are two works which resulted from
studying proteins and related molecular sequences,

• A novel branch and bound algorithm (Bejerano, 2003b) which is a first practical optimization
of a very common exact statistical test for categorical data (such as amino acid composition).
The proof technique we use there was later applied to improve computational complexity of
other important tests (Bejerano et al., 2003).

• A study that relates the evolution of protein coding genes with information theoretic measures
of transmission fidelity (Bejerano et al., 2000).

2



Chapter 1
Introduction

Computational molecular biology, generally identified with the potentially broader term Bioinfor-
matics, is a relatively new and burgeoning scientific field. It has its roots in manual inspections of
the first very short genomic regions and protein sequences, laboriously sequenced by individuals.
Today the field is flooded by genomic and related molecular data churned at an ever increasing pace
by world-wide large scale initiatives. As a result it has grown to become a field of intensive research,
carried out by biologists, joined en masse by computer scientists, mathematicians, physicists and
others. The confluence of these different scientific communities has produced fertile grounds for the
exchange of exciting ideas. It has also led mathematicians to describe their models in prose, and
biologists to invent mathematical notation.

A survey of the complete body of knowledge related to this thesis is beyond the scope of this
work. Even so, it is very challenging to try and present it in a manner accessible to both the bio-
logically and the mathematically inclined. I shall therefore resort to provide sufficient background
to allow the evaluation of this work, altering at times between prose and rigor.

This first chapter provides a very brief introduction to the realm of proteins, and surveys the
biological terms I shall use throughout the thesis. It is mostly based on the standard textbooks of
the field, Branden and Tooze (1999); Alberts et al. (1997); Lewin (2000). I then go on to motivate
and define the broad goals of this research. A more comprehensive discussion of each subject matter
appears in the relevant chapters that follow.

1.1 Proteins

Protein molecules are involved in almost all activities that take place within every living cell.
They carry out the transport and storage of small molecules. They play an important role in the
transduction of molecular signals within the cell, as well as to and from it. They both help build
and take part in the make up of the cell’s skeleton. Certain proteins termed enzymes catalyze
and regulate a broad range of biochemical processes taking place within the cell. Others termed
antibodies defend the cell against invading molecules from the outside world. Many groups of
proteins are known, taking part in different activities within the cell. Depending on cell speciation
in higher organisms (such as in tissues), each type of cell contains several thousand different kinds
of proteins which play a major role in determining the functional role and activity carried by the
cell throughout its lifespan.

A protein is a complex macromolecule. And yet, it is built from simpler repeating units chosen

3
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A ALA Alanine
V VAL Valine
L LEU Leucine
I ILE Isoleucine
F PHE Phenylalanine
P PRO Proline
M MET Methionine
D ASP Aspartic Acid
E GLU Glutamic Acid
K LYS Lysine

R ARG Arginine
S SER Serine
T THR Threonine
C CYS Cysteine
N ASN Asparagine
Q GLU Glutamine
H HIS Histidine
Y TYR Tyrosine
W TRP Tryptophan
G GLY Glycine

Figure 1.1: The Twenty Amino Acids. (left) One and three letter codes of the amino acids. (right) A
Venn diagram conveying several properties of the different amino acids. (adapted from Taylor, 1968).

from a limited set of building blocks which are bonded, one after the other, in a linear order.
These building blocks are the twenty amino acids (Figure 1.1). All amino acids share a common
molecular structure, differing only at their side chains. The different side chains confer diverse
biochemical properties to the various amino acids. Each amino acid along a protein sequence is
also called a residue. The blueprints from which all new proteins are synthesized are stored in the
DNA, the genetically inheritable material, which is also linearly built from simple building blocks,
albeit into a much longer double stranded helix structure. These building blocks are called bases
and only four different ones are used. A region of DNA coding for a protein sequence is called a
gene. Translation from the four letter alphabet of bases into an amino acid sequence is performed
in triplets of bases, known as codons. The genetic code used by the organism matches a single
amino acid against each codon, except for designated stop codons, each capable of signalling the
end of an encoded protein sequence.

Special machinery and intermediate molecules within the cell are responsible for the synthesis
of new proteins from their genes. The linear amino acid sequence which is synthesized during
this process is called the protein primary structure. The average protein sequence is about 300
amino acid long, with short proteins having only tens of amino acids, and long ones having several
thousands. A fully synthesized protein sequence adopts a very specific three dimensional (3D)
structure, known as its tertiary structure, where every amino acid falls into a specific location
and orientation. Different levels of organization can be found within a protein structure. Several
secondary structure elements can be discerned. These are short (3–40) consecutive amino acids
stretches which adopt a well defined local shape, such as an alpha helix and a beta strand. Other
secondary structure elements of less defined shape which usually serve to connect these elements
are called loops, turns or coils. Figure 1.2 schematically shows the three descriptive levels.

A structural motif is a combination of several sequence-consecutive secondary structure ele-
ments which adopts a specific geometric arrangement (e.g., helix-turn-helix). A sequence motif
is a closely related term that describes a sequence segment which occurs in a group of proteins.
Some, but not all motifs are associated with a specific biological function. Several secondary struc-
ture elements may congregate together in space to form a super secondary structure, such as
the Greek key motif. In general, helices and strands tend to form the core of globular protein
structures, whereas loops are more likely to be found on the surface of the molecule.

4



Chapter 1

Figure 1.2: Protein structure. (left) Schematic depiction of the three descriptive levels of a protein: its
sequence of amino acids; a helix shaped secondary structure; and the three dimensional organization of the
entire protein. (right) An example of a multi domain protein. (adapted from Branden and Tooze, 1999).

A protein domain is the fundamental unit of structure. It combines several, not necessarily
sequence-contiguous, secondary structure elements and motifs, which are packed into a compact
globular structure. A domain can fold, independently of the complete sequence in which it is
embedded, into a stable 3D structure and usually carries a specific function. Some proteins are
single domain proteins while the sequence of others, called multi domain proteins, code for
several domains, possibly including two or more repetitions of any given domain (see Figure 1.2).
Finally, several proteins may form a complex, which is then called a protein quaternary structure.

1.2 Protein Classification

Opinions and evidence vary in recent years as to whether the necessary information for the folding
process is always wholly encoded in the protein sequence itself, or may sometimes be media depen-
dent; and as to whether a protein starts to fold into shape as it is being synthesized or collapses to
its conformation only as a whole unit. The rigid view of the final conformation itself has also been
challenged recently, in certain cases. What is clearly indisputable is the fact that the shape of a
protein, together with the biochemical properties of different amino acids placed along its structure
are the main factors which allow the protein to function in a specific and well defined manner.

While each protein sequence usually adopts a unique 3D structure, many different proteins
adopt the same shape, or architecture, a combination of secondary structure elements or domains
which are positioned in a certain manner in space relative to each other. This general structural
shape is called a protein fold.

A common hierarchical approach to protein classification, assuming for the moment known
structures and functions, first groups all proteins into common folds. It is a well established fact
that similar protein sequences fold into similar structures. This is true in most cases, however its
converse certainly is not. Very different protein sequences have already been found that fold in
the same manner. A fold is thus separated into super families of proteins which are suspected
to be homologous, evolutionary related through some distant common ancestor protein. A super
family is made of one or more protein families. The sequence similarity within a family is high
enough to infer evolutionary relatedness to a high degree of certainty. Usually at least one member
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Families

Sub Families

Folds

Super Families

Figure 1.3: Hierarchical view of the protein world. The protein world can be organized in a hierarchical
manner, starting from the typical fold a protein adopts, and descending through the evolutionary and
functional relationships, branching to homologous super-families, families and sub-families.

of a family is similar to a member of another family, justifying the placing of the two in the same
super-family. Other linking evidence is also taken into account, such as conspicuous conservation
at functionally crucial regions. A family of proteins thus mostly contains sequences with relatively
high sequence similarity which fold into similar spatial structures, and therefore presumably also
perform the same function. Some families are further broken down into sub-families, based on
functional evidence which suggests that despite the similarities we have just mentioned, different
groups within the family perform somewhat different functions within their respective organisms.

Thus, at the top of this hierarchical view of the protein world we group proteins that adopt
similar folds, assuming that in many cases similar function will entail. We then use two intermediate
levels to capture evolutionary relatedness, again, assuming that most related proteins diverged from
a common ancestor and are thus more likely to perform the same function. At the bottommost level
we obtain relatively homogeneous groups of evolutionary related proteins, which need be further
split only if different sub-groups have indeed adopted different functional traits, while maintaining
very similar sequences and structures. From a computational point of view we have just performed
a hierarchical clustering of the sequence space in a biologically meaningful manner that respects
sequence, structure and function similarities. Each group of sequences put together using this
scheme, at different granularity levels (i.e., fold, super-family, etc.) is termed a cluster. The
resulting hierarchy is depicted in Figure 1.3.

1.3 Protein Sequence Analysis

Clearly, understanding the function of all proteins is a major goal of molecular biology. This
knowledge is essential to our understanding of nearly all fundamental processes taking place within
a living cell. Finding the structure of a given protein can serve as a key to infer its function. This
information is valuable not only to advance basic science but also carries practical implications in
important fields such as rational drug and protein design.

Experimental determination of the 3D structure of a given protein, however, is a hard and la-
borious task. Through the use of x-ray crystallography and nuclear magnetic resonance techniques,
the structure of but a fraction of all known proteins have been established to date. It is also clear
that for most non globular proteins current structure determination techniques will not do. Protein
sequences, on the other hand are easily obtainable nowadays, through a mostly automated reading
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process. Genomic sequencing initiatives world-wide, such as the Human genome project, are
proving vast amounts of putative protein sequences. These, often internationally co-ordinated ef-
forts, yield ever increasing amounts of sequenced DNA, and derivatives (such as expressed sequence
tags). The DNA segments are then searched computationally for protein coding genes in a process
dubbed gene hunting. These searches have yielded to date close to a million novel putative protein
sequences. These sequences which await analysis are deposited in huge public-domain databases,
accessible to the scientific community through the internet.

However, despite our realization that in most cases the protein sequence itself seems to hold
all necessary information to determine its 3D structure and function, we are far from being able
to correctly infer this shape computationally. Efforts at reconstructing the folding process, which
we are far from understanding, as well as more indirect de novo approaches (such as finding the
minimal energy structure for a given sequence) are only starting to come of age.

To bridge this gap between the easily obtainable sequence, and the mostly unavailable structure
and function information we return to the basic observation made previously. Namely, that proteins
which are similar in sequence tend to fall into the same, or a very similar structure and perform
equal or very similar function. Exceptions to this generally true rule have also been analyzed,
yielding further insight into what constitutes a small or large departure from a known structure.

The basic computational task following this formulation is known in machine learning method-
ology as a “nearest neighbour” approach. Given a new protein sequence of which nothing more is
known, one wishes to search the pool of annotated protein sequences to find the closest match. A
simplest approach would then assign to the novel sequence the structure and function of its nearest
neighbour. More elaborate analysis will rather super-impose the novel sequence on the known one
and characterize the differences between the two into a prediction of conservation of structure and
entailing function. This pairwise comparison of protein sequences is one of the first and best studied
issues in early bioinformatics research. It has led to the development of well tailored search tools,
which now serve as the first step of every biological analysis of any unannotated sequence.

As our knowledge of the protein world grew it became clear that many newly discovered se-
quences do not have well annotated close homologs. When a closely related sequence does not
exist, one is naturally interested in finding more distant homologs of a novel protein sequence.
Here, however, pairwise methods come into difficulties. Without a good understanding of the un-
derlying structure encoded in a protein primary structure it is nearly impossible to differentiate,
when comparing two sequences, between spurious similarities and scant yet meaningful indications
of homology. Spurious hits between two unrelated sequences are the artifact of the limited amino
acid alphabet combined with the algorithmic approach behind pairwise searches which tries to best
match the two sequences, amino acid to amino acid. On the other hand, few similarities between
two sequences, that concentrate on crucial structural and functional elements of the protein (such
as a protein active site), can indicate distant homologs. This region of distant homology on the
borderline of random similarity has been termed the twilight zone of protein homology, and is to
date partially unresolved.

1.4 Motivation and Goals

For a novel protein sequence, assume that we have found its most significant match in a database
of partially annotated proteins. In frequent twilight zone cases we are required to differentiate be-
tween a distantly related pair and an unrelated pair, without a clear understanding of the patterns
of conservation in distant relatives. A further step in computational sequence analysis makes the
following observation. Collect all sequences which are clear homologs of the template sequence,

7



Chapter 1

compare these against the template and deduce empirically which regions have been better con-
served during evolution and which are more variable. Armed with this knowledge return to examine
the homology with the novel sequence. If the pattern of conservation follows along the evolutionary
conservation pattern conclude homology, otherwise reject as not related.

This task serves as the first goal of the thesis. We will utilize the fact that many proteins
families have already been established, including anywhere from several up to thousands of well
established members. Using these so called family seed sequences we will build a variable length
Markovian model that captures underlying properties shared by all family members. We will then
compare novel sequences, not to single sequences, but rather against a protein family model.
We will show that our novel modeling technique outperforms pairwise sequence comparison, and is
comparable to the state of the art hidden Markov models in use today.

In light of the magnitude and rapid increase in novel protein sequences awaiting annotation, we
will put special emphasis in optimizing the run time of our algorithm. As a result we will obtain
an approach to learn and predict using the novel models in linear time, surpassing the equivalent
quadratic hidden Markov model algorithms.

We will then turn to the much harder task of unsupervised protein sequence domain de-
tection from sequence information alone. These are regions of high conservation within groups
of proteins, often corresponding each to a single structural domain. Due to the multi-domain
nature of many proteins, novel sequences may resemble one protein family along one region, and
other families along other regions. The segmentation of the novel proteins into their respective
domains is commonly done based on prior structural knowledge, where it is available, extrapo-
lating to other sequences sharing similar segments. As a result protein sequences which were not
thoroughly investigated, and such is the vast majority in the post-genomic era, may contain various
yet undiscovered protein domains. We will thus set out to capture protein domains from unaligned
unannotated sequences, using the same Markovian model introduced above. We will first show
that these models are capable of modeling two or more domains simultaneously from an unlabeled
set of proteins exhibiting several instance of each domain of interest. We will then devise a novel
algorithm whose aim is to segment a given set of unlabeled sequences into the underlying domains,
based on the information in the given set alone. As this is a much harder task, we will analyze to
what extent our new tool answers it.

Finally, we will also use the Markovian modeling technique for another task which cannot
be easily achieved using existing tools. We analyze a set of protein sub-families, which all have
very similar sequences and yet seem to perform different functions. Using discriminative analysis
methods we try to explain the observed differences between the groups by highlighting the most
informative sequence motifs differentiating between them. Such computational analysis may direct
us to important structural elements (possibly as small as a single, strategically placed amino acid)
which are well conserved within a group but differ between them.

Having given a prologue with the basic terminology and our main goals, the rest of the thesis
is organized as follows. In Chapter 2 we perform a literature survey of the current bioinformatic
tools and mathematical approaches to protein family classification, segmentation and discriminative
analysis. In Chapter 3 we introduce Markovian sequence modeling. We motivate it in our context
and proceed to show how we adapt the Markovian modeling approach to protein classification. We
demonstrate the ability of this method to capture successfully the notion of a protein family from
a given seed of examples, and generalize it in the task of classifying novel sequences correctly. In
Chapter 4 we optimize the runtime of our Markovian modeling approach. We augment the data
structures and replace all underlying algorithms to obtain an optimal linear run time and memory
usage complexity. Such an optimization is important as the databases themselves grow at an almost
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exponential rate. Chapter 5 defines the mathematical approach behind the segmentation challenge,
and attempts to solve it using a novel clustering algorithm for Markovian models. Chapter 6 turns
to examine discriminative modeling in the context of protein sub-families, and conclusions of the
main part follow in Chapter 7. In Appendix A we supplement two additional works. A novel
algorithm for performing exact statistical tests for categorical data using a branch and bound
approach, and an analysis relating the evolution of protein coding genes with measures of fidelity
in an information theoretic context.
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Chapter 2
Protein Family Related Methods and Tools

In this chapter we review mathematical models, established bioinformatic tools and research papers
which relate to our work. We survey efforts to cluster protein sequences, to segment them into their
constituent domains, and to discriminate sequence-wise between functional sub-families.

2.1 Preliminaries

Almost a million verified and putative protein sequences are currently known. This impressive
number increases at an ever accelerating pace, primarily as a result of the many genomic sequencing
initiatives operating world wide. Available technology has completely automated the process of
reading genomic sequences, allowing the rapid sequencing of dozens of complete genomes from
various organisms.

Major repositories for verified and putative protein sequences are the Swiss-Prot and TrEMBL1

databases (Boeckmann et al., 2003). Swissprot currently holds more than 100, 000 annotated pro-
tein sequence entries, each of which manually inspected before insertion into the database. Its
companion database Trembl, currently about six times as large, holds novel entries awaiting man-
ual inspection, and subsequent transfer to the annotated database.

Protein structure determination, however, is still a manual and laborious task to a large extent.
As a result, the number of proteins whose structure has been experimentally determined, several
thousands, is but a fraction of all known sequences. All solved 3D structures are deposited in the
PDB database (Westbrook et al., 2003). The structure of a protein is the key to understanding
its function. Indeed, the function of most solved structures has been inferred, at least to some
extent, following close manual inspection, and integration of experimental evidence. Three main
databases classify known protein structures hierarchically: SCOP (Lo Conte et al., 2002), CATH
(Pearl et al., 2003) and FSSP (Holm and Sander, 1998), ranging from a manual through a semi-
automatic to a fully-automated scheme, respectively. Differences between the three clustering
schemes exist (e.g., discussed in Hadley and Jones, 1999), but essentially, especially the first two
manually guided databases, use the methodology discussed in Section 1.2, clustering under similar
structural architecture, homologous super-families, and families.

While these databases are mostly unanimous in classifying the relatively few known structures,

1A Bioinformatics database or tool name is usually an abbreviation of a phrase that somewhat describes it. Instead
of pursuing these abbreviations, we offer a full description of each such object. Following definition, we will mostly
homogenize the use of capital letters, for ease of reading, and often capitalize only the initial letter in each such name.
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Figure 2.1: Edit distance computation between two protein sequences, s and t. We begin by comparing
s1 and t1. We can either match the two and proceed to compare s2 to t2, delete s1 and proceed to compare
s2 to t1 or insert t1 and proceed to compare s1 to t2. These three operations are denoted above by their
initials m, d, i, respectively. From the point we have arrived at we again choose either of these three options,
and continue to do so until we reach the upper right corner of the rectangle. The path we have chosen defines
a series of operations that, when applied to sequence s, turns it into sequence t. We add costs to each match
operation, depending on the two amino acids matched (low cost for identical or similar ones, high cost for
different ones), and to the indel (insert or delete) operations to obtain a path cost. The Smith-Waterman
algorithm then searches efficiently for the minimal cost path which is termed the edit distance between the
two sequences. The O(mn) search is performed using a dynamic programming (DP) technique, which
relies on the fact that sub-paths of the optimal path are optimal themselves. The problem is recursively
broken into smaller sub-problems whose solutions are combined to obtain the global minimum.

organizing the far larger world of known protein sequences is an intense research area, made difficult
by our lack of deep understanding of the mapping between sequence and structure. As reviewed in
Chapter 1, the first and most thoroughly studied tools in computational sequence analysis are the
pairwise comparison algorithms. The seminal Smith-Waterman homology detection algorithm
(Smith and Waterman, 1981) searches for the minimal cost of amino acid insertions, deletions
and substitutions which, when applied to one sequence, turn it into the other (see Figure 2.1).
The free parameters of this model, including amino acid substitution cost, gap opening and gap
extension costs, have been optimized over the years. However, the complexity of this algorithm is
quadratic, deeming it rather slow when scanning a single sequence against a large database of other
sequences, or when trying to compute all pairwise similarities in a large set of protein sequences.
As a result, two heuristic linear approximation methods for pairwise comparison have also become
very popular. These are BLAST (Altschul et al., 1997) and FASTA (Pearson, 2000), which have
also been refined over the last decade. These three methods are now used as a first step in the
examination of every novel protein sequence. They also serve as the starting point to several tools
aimed at capturing higher order structure in the protein world, which we review next.

2.2 Protein Sequence Classification

As we have seen sequences with known structures and functions can be classified hierarchically
into folds, super-families, families, and sub-families (Section 1.2). Computational classification
of protein sequences aims at extending the resulting hierarchy to include the majority of protein
sequences for which neither structure not function have been verified experimentally. We survey
three general approaches to this task.

11
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Figure 2.2: The four categories of a binary classification test. When a model is presented with a
binary classification task, four types of calls are possible: the model may label an item as either positive
(abbreviated P in the table above) or negative (N). All such calls are either true (T) or false (F), when
compared to the real labels. Each of the four two-letter combinations defines a variable that holds the
counts of items classified into that category. Thus, for example, the real positive items are the true positives
(TP) together with the false negatives (FN), or simply TP+FN. Several measures of classification accuracy
defined based on these variables are introduced throughout the text.

2.2.1 Supervised Approaches

Goal. Given a subset of sequences, or pre-cut subsequences, tagged as either belonging or not to
a certain protein cluster, at either level of granularity (Section 1.2), devise a mathematical model
which is capable when presented with novel protein sequences, to correctly conclude whether they
belong to the cluster.

This is a supervised task because the given sequences have been tagged, and possibly excised,
by an external source. Subsequent modeling will rely on this tagging for concept building. It is
also a binary classification task, and as such each decision made can fall into one of four categories:
Correctly labeled true positives (TP) and true negatives (TN), and incorrectly labeled false positives
(FP) and false negatives (FN), as illustrated in Figure 2.2. The resulting model should perform
well by two criteria: Sensitivity, which measures the ability to detect sequences that belong to the
cluster, and is formally defined as TP

TP+FN . And specificity, which measures the ability to reject

sequences that do not belong to it, defined as TN
TN+FP . Falling in with conventions we will use

cluster and family interchangeably even when the intended level of granularity differs (i.e., when
modeling a super-family).

Regular Expressions

Regular expressions have their roots in the Unix operating system, most commonly used there to
specify a group of files or other objects without explicit enumeration (Friedl, 2002).

Mathematically, a regular expression (or regexp, or pattern) is a text string that describes some
set of strings. Regexp R matches a string S if S is in the set of strings described by R. In the
context of protein sequences we can thus define a regexp to describe a protein family if the sequences
of family members match this regexp as plain strings. The alphabet of protein regular expressions
is thus the accepted single character coding of the twenty amino acids (Figure 1.1). The common
regexp operators are:
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• The match-self operator. Each one of the twenty characters matching only itself. E.g., V
matches only valine in the protein sequence.

• The match-any-amino-acid operator. This operator matches any single amino acid. Usually
denoted by X.

• The concatenation operator which is implicit. E.g., VXV matches only a valine, followed by
any amino acid, followed by another valine.

• Repetition operators of the forms match zero or more, once or more, and interval operators.
E.g., V-X(4,5)-V will match two valines which are four or five residues apart.

• List operators. Either a matching list that matches a single character represented by one of
the list items, or a non-matching list which matches a single character not represented by one
of the list items. E.g., [VAF] matches either a valine, an alanine or a phenylalanine residue.

• The alternation operator. E.g., VA|AV will match a consecutive pair of valine and alanine
residues, in either order.

Ideally we would want to come up with regular expressions that match all known and probable
protein family members, and reject all others.

The PROSITE database (Sigrist et al., 2002) is primarily a repository of protein related
regular expressions. Rather than trying to describe complete sequences, a Prosite regexp is said to
(locally) match a protein sequence if it has at least one contiguous region that exactly matches the
given regexp. Protein patterns are obtained from literature searches, as well as crafted from well-
characterized families, from sequence searches against Swissprot and Trembl, and from sequence
clustering (see below).

The first step in pattern construction is the generation of a reliable multiple sequence align-
ment (MSA). Since related sequences are the product of gene duplication and subsequent mutation
events, it is possible, at least in principle, to align related protein sequences such that each column
represents a single residue from the ancestral sequence (which may have been substituted or deleted
in some) or one that was subsequently inserted in one or several family members (see Figure 2.3).
The curator searches the alignment for a short conserved subsequence, typically 4–5 residues long,
which is part of a region known to be important or which includes one or more biologically sig-
nificant residues. This core pattern is then examined against Swissprot and Trembl and extended
until a best match to the given protein family is achieved. Published patterns collected into Prosite
may also be further optimized this way. For example, the chosen Prosite signature (numbered
PS00193, Sigrist et al., 2002) for the Cytochrome b C-terminal domain family of Figure 2.3 is
P-[DE]-W-[FY]-[LFY](2), which focuses on a family invariant P-E-W triplet.

While intuitively appealing, regular expressions are rather limited in this context. First, being
typically confined to small regions, regexps are relatively vulnerable to spurious hits along the
many protein sequences available (resulting in low specificity). Another weakness lies in their
all or nothing approach. Namely, either a protein sequence matches a pattern, or it does not.
For example, if the sample set from which the motif was carved contained only leucine at a certain
position, and a subsequent novel site is found, matching the entire pattern, apart from an isoleucine
replacing the leucine, it will be rejected. On the other hand, if one tries to accommodate too much
variability per column, by the time that enough positions are expanded, an unacceptably high
number of false matches would have joined the identified set. As a result many protein families as
well as functional and structural domains cannot be characterized satisfactorily using patterns.
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PETD_SYNP2/65 PGNPFATPLEILPEWYLYPVFQILRVLPNKLLGIACQGAIPLGLMMVP...

PETD_NOSSP/65 PANPFATPLEILPEWYLYPVFQILRSLPNKLLGVLAMASVPLGLILVP...

PETD_CHLEU/65 PANPFATPLEILPEWYFYPVFQILRTVPNKLLGVLAMAAVPVGLLTVP...

CYB_MARPO/262 PANPMSTPAHIVPEWYFLPVYAILRSIPNKLGGVAAIGLVFVSLLALP...

CYB_HETFR/259 PANPLVTPPHIKPEWYFLFAYAILRSIPNKLGGVLALLFSILMLLLVP...

CYBB_STELO/258 PANPLSTPAHIKPEWYFLFAYAILRSIPNKLGGVLALLLSILVLIFIP...

CYBA_STELO/258 PANPLSTPPHIKPEWYFLFAYAILRSIPNKLGGVLALLLSILILIFIP...

CYB_APILI/260 IANPMNTPTHIKPEWYFLFAYSILRAIPNKLGGVIGLVMSILIL--YI...

CYB_ASCSU/249 ESDPMMSPVHIVPEWYFLFAYAILRAIPNKVLGVVSLFASILVL--VV...

CYB_TRYBB/253 IVDTLKTSDKILPEWFFLYLFGFLKAIPDKFMGLFLMVILLFSL--FL...

Figure 2.3: A Multiple Alignment Segment of the Cytochrome b C-terminal domain family seed (Pfam
family PF00032, Bateman et al., 2002). These transmembrane proteins, involved in respiratory functions,
appear in many living organisms across multiple lineages (Zhang et al., 1998). We show the start of the
C-terminal domain, which forms a relatively conserved region around an invariant P-E-W triplet that lies in
the loop that separates the fifth and sixth transmembrane segments. On the left are the Swissprot identifiers,
followed by the positional location of the first amino acid in the block. Gap positions towards the end of the
aligned segment are denoted by ‘-’.

A partial solution to the latter problem could be offered in the form of approximate matches,
i.e., finding all subsequences that would exactly match a conservative regexp, if allowed to undergo
one or more insertion, deletion or substitution event. While the algorithmic aspects of this direction
are well studied in computer science (e.g., Gusfield, 1997), their use would increase instances of
spurious hits.

Profiles

Basic sequence profiles, sometimes called weight or position specific scoring matrices (PSSM), are
also derived from consecutive regions of multiple alignments of related sequences (Gribskov et al.,
1987), but quite differently. A consecutive region of relatively high conservation of length l, possibly
the whole alignment, is typically chosen.

Denote by Σ the 20 amino acid alphabet (Figure 1.1). A profile is a 20 × l matrix {sσi}
σ∈Σ
i=1...l

of scores for each each possible amino acid at each position of the profile. Scoring schemes vary,
but they all aim to capture the likelihood of observing a given amino acid in that position of the
multiple alignment.

Any novel protein segment of length l can now be scored against the profile by summing the
scores each of the protein’s residues obtain at each position. One then typically calibrates a scoring
threshold t, such that a novel protein sequence x1 . . . xn will be accepted into the family if

max{
i0+l−1
∑

i=i0

sxi i−i0+1 | i0 = 1, . . . , n− l + 1 } ≥ t

Contrary to the match or reject regular expression approach we have now defined a conceptually
continuous scale of grades and can choose where to dissect it based on our tagged examples. The
thresholds for different protein family profiles can be compared by observing the average score
contribution per symbol, t/l. Differences attest to the different levels of inter-family conservation.

These gapless profiles can be extended, to allow insertion and deletion costs at each column.
Algorithmically, using dynamic programming (similarly to Figure 2.1) in O(nl) time one can ex-
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amine all possible contiguous segment matches to the profile, now of only approximately length l,
for the maximal scoring one.

Due to the limitations of regular expressions discussed above, PROSITE has been expanded
to also include sequence profiles. Prosite profiles require a multiple sequence alignment as input
and use a symbol comparison table to convert residue frequency distributions into weights. Profile
sensitivity is then improved using iterative refinement procedures.

Unlike patterns, profiles are usually not confined to small regions with high sequence similarity.
Rather, they attempt to characterize a protein family or domain over the entire length of the
multiple alignment block. This scheme can lead to false hits, when a profile covering conserved
as well as divergent sequence regions, obtains a significant similarity score to a sequence that is
partially incorrectly aligned. Yet, in general profiles are considered to be more sensitive and more
robust than patterns, partly because they assign finite weights to residues which have not been
observed previously at every position, using observed amino acid compositions and observed amino
acid substitutions.

Sequence Fingerprints

The term sequence fingerprint is not unique to any particular model. Rather, it denotes the
conceptual fact that we no longer attempt to build a single detector model for a certain domain or
family, but rather rely on a set of these, used in concert, for positive identification.

Fingerprinting relies on the fact that in most protein families certain parts of a sequence tend
to be more conserved than others across the family. These are typically, but not always, related
to key functional regions or to core structural elements of the fold. This contrasts the approach
of Prosite, reviewed above, where each pattern or profile is optimized to characterize, by itself, a
single important site, motif, or a domain.

A fingerprint approach offers more versatility. If a protein family multiple alignment shows,
for example, two well conserved regions, we are no longer obliged to choose on which to focus,
nor must we model the unstructured in-between region, which may cause false hits to rank higher.
Rather, we can try to characterize both regions using mathematical models of our choice. Next
we can decide what constitutes a family member. For example we can demand that an accepted
novel sequence be recognized by both models, and in the same linear order as in the alignment from
which they were crafted. We can also limit the allowed spacer between the two segments, etc. The
two databases we next survey both use ungapped sequence profiles as the basic fingerprint unit.

PRINTS (Attwood et al., 2003) is a compendium of simple protein profile fingerprints. The
starting point for fingerprint definition is, again, a reliable multiple sequence alignment, done by
human experts. Typically only a few family members are included in the initial alignment, to ease
the manual inspection. Once a motif, or set of motifs, has been identified, the conserved regions
are manually excised in the form of short independent local alignments. Contrary to Prosite’s
focus on meaningful conserved motifs, here there are no rules regarding the juxtaposition of such
motifs, other than that they should not substantially overlap. Each fingerprint is treated as a
simple frequency matrix. Independent database scans are made with each aligned motif, summing
the scores of identical residues for each position of the retrieved match, using no mutation or
otherwise weighting scheme. To be considered for family membership a sequence must match all
fingerprints. If novel family members are discovered they are used to update the profiles and
perform a new search. This process is repeated manually until no further improvements are found.
The final aligned motifs from this iterative procedure constitute the refined fingerprint that is
entered into the Prints database. To address the relatively slow pace at which new families are
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added through this manually supervised process a mostly automatic classification scheme based on
the same principles, has been recently initiated in an accompanying database called prePRINTS.
This database obtains its putative family seeds from Prodom, an automated clustering of the entire
sequence space, which we review later on.

Alignment blocks in the Blocks+ database (Henikoff et al., 2000) are also multiply aligned
ungapped segments corresponding to the most highly conserved regions of proteins. However the
algorithmic details between the two methods differ. The generation of block fingerprints is au-
tomatic. An algorithm performs the multiple alignment of related sequences, it then searches for
contiguous intervals up to sixty positions long where the aligned amino acids are highly similar in at
least half of the aligned sequences. The best subset of blocks from all available ones is chosen as the
representative fingerprint of the family (Henikoff and Henikoff, 1991). Contrary to Prints, Blocks
profiles are weighted to avoid extensive bias due to subsets of overly similar sequences within an
alignment, and sequence scoring is not governed only by simple frequency calculations, but also in-
volves prior knowledge of the substitution rates between between different amino acids. Like Prints
and other databases we review, it contains blocks derived both from biologically meaningful Prosite
families, from Pfam sequence domain families and from Prodom and Domo families generated by
automated clustering schemes (see below).

Fingerprints extend our ability to characterize protein families in cases where two or more
relatively well conserved regions together characterize the family well. However, due to the myriad
of possible combinations, the profiles used to generate fingerprints in practice are simple gapless
ones. Consequently characterization of more divergent or heterogeneous families is often out of
reach for such tools.

Profile Hidden Markov Models

Hidden Markov models (HMM) are rich and well studied mathematical models that have been
widely applied in the field of speech recognition (Rabiner, 1986). From a bioinformatic point
of view profile HMMs (Krogh et al., 1994) are a non-trivial extension of the profile model defined
earlier. We begin by surveying the general HMM theory, and then focus on the specific architecture
and topology of profile HMMs.

The basic HMM building blocks are termed states. An HMM has a finite set of states, S =
{s1, . . . , sN}. In each discrete time step t an HMM process is found at a particular state, qt ∈ S.
We denote by π the probability vector of finding the HMM at some state in time t = 1, such that
πi = P (q1 = si). The process then switches from one state to another (possibly back to itself)
at discrete intervals, governed by a stochastic N × N transition matrix A, where aij = P (qt+1 =
sj|qt = si). Thus, a series of HMM state transitions Q = q1, . . . , qT is a Markov process of order
one, since given the complete history of the process at time t, the next transition is influenced only
by the current transition2

P (qt+1|q1 . . . qt) = P (qt+1|qt)

Each time an HMM arrives at state qt it emits a symbol ot from a finite alphabet Σ = {σ1, . . . σ|Σ|}.
Each chosen symbol is governed by a state specific stochastic emission matrix B of size N × |Σ|,
where bik = P (ot = σk|qt = si). A transition series Q thus generates a second series O = o1 . . . oT .
The emission process is termed stationary because

∀σ, s, t, t′ : P (ot = σ|qt = s) = P (ot′ = σ|qt′ = s)

2Throughout we will often use expressions of the form P (x) as shorthand for P (X = x).
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The HMM is thus completely defined by Λ = (π,A,B). When we come to fit an HMM to some
data we assume that the series of state transitions Q is hidden and cannot be directly measured.
What we can directly measure is only the observed series O.

There are three major inferences we would like to perform using HMMs. Since the techniques
used to solves these problems are not directly relevant to this thesis we suffice in outlining them.

The evaluation problem. Compute P (O|Λ), which is the probability that a given HMM gener-
ated a given series of observations. Formally this is defined as a weighted sum over all NT

possible transition series
P (O|Λ) =

∑

Q∈ST

P (Q|Λ)P (O|Q,Λ)

A standard dynamic programming approach yields the forward algorithm that computes
this sum in O(N2T ) time.

The decoding problem. Given an observed series O and a model Λ, find a corresponding state
sequence Q which best explains the observations. This problem has several different formu-
lations. We focus on the one relevant for us subsequently, and search for the most likely
path,

Q∗ = arg max
Q

P (Q|O,Λ) = arg max
Q

P (Q|Λ)P (O|Q,Λ)

Using Bayes rule to obtain the right hand term we can take a very similar approach to that
of the evaluation problem sum, replacing additions with maximum operators and tracking
paths, to derive the Viterbi algorithm which has the same time complexity.

The learning problem. Given an observed series O, find the HMM that best explains it,

Λ∗ = arg max
Λ

P (O|Λ)

This problem is much harder than the previous two, as it requires finding the global maximum
of the likelihood function P (data|model) over a continuous space of model parameters rid-
dled with many local maxima. Indeed, in general, as in most practical applications no analyti-
cal solution can be found to this problem. The Baum-Welch algorithm offers an alternative
where one guesses an initial model Λ0. An iterative procedure is then performed where from
each Λτ we derive another model Λτ+1 for which it is guaranteed that P (O|Λτ+1) ≥ P (O|Λτ ).
This procedure, which is an instance of the Expectation Maximization (EM) approach
thus converges to some local maximum of the likelihood function.

We turn to define protein profile HMMs which are a specific subset of HMMs. We begin by
assuming data preprocessing. Namely, that we are given a multiple alignment block of length L′

consisting of l aligned sequences (recall Figure 2.3). We will illustrate the building process using
Figure 2.4 which shows a simple example where L′ = 3 and l = 5 We will build and calibrate a
specific HMM that imitates the process of matching a novel protein sequence to this MSA. We begin
by performing model selection to determine the architecture and topology of our HMM. First, we
decide which subset of the alignment columns represent sequence positions common to the whole
family, and which represent positions inserted in a small, non-representative subset of the family
(i.e., a column where most entries are gap symbols). We denote the size of the first subset L ≤ L′.
Let S = {b, e, i0, . . . , iL,m1, . . . ,mL, d1, . . . , dL}. We term these states in correspondence to their
initial letter: begin, end, insert, match and delete states. We set πb = P (q1 = b) = 1, forcing all
paths to start from the begin state. The transition matrix A allows only the very restricted set
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Figure 2.4: A short profile HMM (right) representing the multiple alignment of five sequences along
three consensus columns (left). Each column is modeled by a match state (squares labeled m1, m2, m3,
respectively). Above each we plot the emission probabilities of the twenty amino acids, using black bars. On
top of each vector we denote the column consensus amino acid(s). Insert states (diamonds labeled i0–i3) are
also associated with emission vectors. Delete states (circles labeled d1–d3) have no emission probabilities as
they stand for columns where the respective amino acid was deleted in the protein sequence compared to
the model. Begin and end states (b,e) are also included, and allowed transitions are shown as arrows. Note
that no amino acid is precluded (by assigning zero probability) at any column. (adapted from Eddy, 1998b).

of transitions depicted by arrows in Figure 2.4. This topology defines a left-right model since
allowed transitions either stay in place or move to the right until the rightmost state e is reached. In
particular, state subscripts along a valid path can only increase by increments of one. The emission
alphabet Σ is set to all allowed amino acids (Figure 1.1), and only match and insert states emit
them. The begin, end and delete states are all silent states.3

How does this architecture relate to comparing a novel sequence O = o1, . . . , oT to the MSA?
Just as in the pairwise sequence comparison of Figure 2.1, we start from the N- terminal of both O
and the MSA. We then either delete or insert a symbol from O, or match it to the current column
of the MSA. The HMM states dj , ij ,mj respectively perform these operations. Thus, mj emits, or
weighs amino acid σ according to its abundance in the respective MSA column. State ij inserts
one amino acid (or more, using self transitions) from O before matching column j. Finally, the
silent state dj allows a gap in sequence O skipping column j of the MSA altogether. To globally
align sequence O to HMM Λ we will demand that every allowed path Q = q1, . . . , qT ′ (T ′ ≥ T + 2
due to states b, e and insertions) ends in qT ′ = e.

Under this interpretation the learning problem, or model training goal at hand can be formally
defined as finding

Λ∗ = arg max
{

P (O1, . . . , Ol|Q1, . . . , Ql,Λ) | A, {bik}
k=1,...,|Σ|
i=m1,...,mL

}

where O1, . . . Ol are the l MSA sequences, and Q1, . . . , Ql are their paths through the HMM Λ
defined by the MSA itself. Parameter estimation is limited to all allowed transition probabilities
and emission from match states. Insert state emissions are typically set to some background
distribution of amino acids. This problem is much more restricted than the original one, and can
be solved analytically. If we denote by αij the transition counts we observe along paths Q1, . . . , Ql

3Formally we could have augmented Σ with the empty symbol ε and restrict the emission matrix such that for
each silent state P (ε|s) = 1, and elsewhere P (ε|s) = 0.
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between the different states, and by βik the number of times each σk appeared at state mi along
those paths, then one can show that the maximum likelihood (ML) solution yields

a∗ij =
αij

∑

j′ αij′
, b∗ik =

βik
∑

k′ βik′

While being optimal for the training set at hand, these probabilities are then corrected for small
sample size effects. Note, for example, that they exclude the use of any state transition and any
amino acid emission which were not observed in the training set (i.e, αij = 0⇒ a∗ij = 0).

Querying a novel sequence O against such an HMM Λ, or model prediction can be done
by computing either P (O|Λ) summing over all paths, or P (O|Q∗,Λ) which the Viterbi algorithm
can be altered to retrieve, using only the most probable path Q∗. Classification can be obtained
by contrasting either expression with a threshold t, which, as in the profile case will be sequence
length dependent. A more statistically motivated procedure performs a likelihood ratio test
between the above probability and P (O|R), where R models a random protein sequence, typically
using a single column independent background distribution. The HMM is thus shown here to be
a generative model of the data, as acceptance or rejection are seen to relate to the probability
that the given HMM generated, or emitted, the novel sequence.

Another issue important in protein modeling is the need to perform sequence weighting.
Since column emission probabilities are treated as independent events, if a large number of training
sequences come for a specific subset of family sequences, all emission probabilities will be biased
towards these, impairing the ability of the model to detect other family members. Finally, we
note that profile HMMs architecture can be augmented to allow explicit local (partial) sequence
matches to the model, as depicted in Figure 2.5. They can also be built from an unaligned set
sequences. This is done using iterative applications of the Baum-Welch and Viterbi algorithms to
align the training sequences against each other, which eventually results in an HMM-built MSA.
These and other extensions of estimating profile HMMs from protein sequences are discussed at
length in Durbin et al. (1998).

Pfam (Bateman et al., 2002) is a database of multiple alignments and profile HMMs of protein
sequence domains. We recall that by sequence domain we denote a long, relatively well-conserved
protein sequence region, which in many cases represents a structural domain or an otherwise evo-
lutionary conserved structure with bearings on the protein’s function.

Pfam is composed of two sets of families. Pfam-A families are based on curated multiple
alignments. For each family in Pfam-A a seed multiple alignment is manually prepared from
selected family members. A profile HMM is derived from the seed alignment and used to find
additional family members and align them to the family model. This process can be iterated until
it achieves satisfactory results. In certain cases the resulting alignment is discarded by the curator
and a new attempt is made using other seed members. The resulting HMMs together with the
thresholds used to train them are also stored in the database, and can be used to classify novel
sequences. Pfam-B automates this process for the rest of the proteins clustered automatically
into families by Prodom. Pfam-B families are candidates for protein family characterization and
annotation.

The SMART (Letunic et al., 2002) and TIGRFAMs (Haft et al., 2003) databases of profile
HMMs complement Pfam in specific narrower areas of interest. In principle, Pfam sequence domains
attempt to cover all conserved, long-enough contiguous sequence regions which appear in at least
several different protein sequences. Smart puts a special emphasis on signalling, extracellular
and chromatin-associated protein domains. These domains are extensively annotated there with
respect to phyletic distributions, functional class, tertiary structures and functionally important
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Figure 2.5: HMM topology comparison (legend as in Figure 2.4). (top) The profile HMM described
in the text. (bottom) An augmented topology allowing for explicit local matches and repeating elements
to be represented as a single path from begin to end state. Local matches are allowed by adding to the
profile HMM explicit initial and terminal insert states, and allowing to jump straight from the initial insert
state to any match state in the sequence, and from any match state out to the terminal insert state. Whole
or fragmented repeats are accommodated by a single backwards edge which includes an intermediate insert
state. (adapted from Eddy, 1998b).

residues. This focus on mostly regulatory domains stems from a realization that those domains
were proving most difficult to detect and annotate using database searching methods. Regulatory
domains are generally shorter and less well conserved, whereas enzymes, for example, are mostly
longer and have better amino acid conservation, particularly in active site regions, allowing for
better characterization using Pfam and the simpler methods discussed earlier.

The special focus in Tigrfams is on characterizing groups of proteins which are conserved with
respect to function. In such groups (called equivalogs) no member has diverged functionally since
their last common ancestor. Tigrfams curated multiple alignments and HMMs are thus mostly
geared towards functional, rather than structural annotation. Through sequence homology, it
provides the information best suited for automatic assignment of specific functions to proteins
from large scale genome sequencing projects. A Pfam sequence domain family may be broken
down on occasion by Tigrfams into sub-families of divergent functions. On the other hand when
several structural Pfam domains characterize a single function when they appear together, they
will typically be modeled by a single Tigrfams HMM of the entire region containing these domains.

Profile HMMs have been generally accepted as the preferred method for generating a discrim-
inating mathematical model from a multiple sequence alignment. As such, it is no surprise that
other Profile HMM databases also exist, which are not primarily derived from sequence data alone.
One such example is the HOMSTRAD database (de Bakker et al., 2001) of alignments and
HMMs which is primarily focused on structural alignment. In structural, contrary to sequence
alignment, residues are not aligned to each other based on physico-chemical similarities but rather
based on their actual location in the 3D structure of the proteins. A structural alignment is derived
in principle only from sequences whose structures are known. These are aligned in the best possible
way against each other in three dimensions, using measures of backbone proximity and other essen-
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tial geometrical measures, which are very different from sequence alignment similarity functions.
As noted earlier, only a fraction of all known protein sequences have solved structures, and this
imbalance currently only increases. Thus, the Homstrad database takes structural alignments and
augments them with available sequence data to create enriched alignments whose primary focus is
spatial positioning. Overall similarity between members of an alignment can be very low, as long
as structurally and functionally important residues (such as those of the active site) can be reliably
aligned and thus highlighted in all members of the group.

Evolution tends to conserve structure much more than sequence. Therefore, the best quality
multiple sequence alignments are generally considered to be those derived from structural super-
position. Interestingly, in a recent study (Griffiths-Jones and Bateman, 2002) several structure
and sequence alignment methods were compared. While structural data did improve the quality of
obtained multiple sequence alignments, these did not add significantly to the ability of the derived
profile HMMs to find more remote sequence homologs.

2.2.2 Unsupervised Clustering

All previous methods, with no exception require labeled sequences, typically a manually curated
set of aligned sequences per targeted family. However, as mentioned, the in-flux of novel sequences
together with their observed power-law abiding diversity leave many sequences outside the coverage
of all curated databases. Fully automated clustering methods give partial answers with respect to
global organization of all protein sequences.

Goal. Given a set of unlabeled sequences, group them into biologically meaningful clusters at the
different granularity levels discussed in Section 1.2. Alternatively, allow some of the sequences to
be pre-labeled, but emphasize the determination of novel clusters of biologically related sequences,
which are not related to any of the given labeled ones.

From a mathematical point of view clustering is an ill-posed problem. The hierarchical classifi-
cation of the protein world into folds, super-families, families and sub-families serves as an excellent
example of this ambiguity. While large parts of the classification tree can be unanimously agreed
upon by protein experts, the actual details of each assignment vary tremendously. They involve a
myriad of sequence, structure and function related observations, which we are far from being able
to quantify mathematically to obtain a unique objective function we wish to optimize.

As a result, computational clustering efforts choose very different approaches to the same task.
They use different representations of the proteins to be classified, define different optimization
goals, and try to achieve, or often approximate these using different algorithmic techniques. Not
surprisingly the resulting partitions of the known protein space differ, and more dramatically so than
in the curated databases of the previous section. Moreover, their granularity levels are not directly
correlated with the biological four layer hierarchy. As a result many clusters are too heterogeneous
with respect to the known sequences to allow clear labeling. The resulting clusters are often not
stable, such that subsequent runs with new data can result in rather different partitions, between
two updates of the same database.

Still, as far as they are from inferring the ultimate classification tree which would result from
the formidable task of completely understanding each individual sequence, they offer a unique and
fruitful glimpse into it. One such beneficiary is the on-going structural genomics effort to focus
experimental structure determination on sequences which represent super-families with no similar
known structure.

The clustering schemes we next review use the protein sequence as its basic representation.
Typically, they then proceeds to use one or more of the common pairwise similarity measures to
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Figure 2.6: Protomap unsupervised clustering. A small subset of Protomap clusters is shown, each
depicted by a circle whose diameter is proportional to the cluster size. Each cluster is labeled according
to the annotation of the majority of the proteins within it. Edges connecting different clusters indicate
similarity, and edge width is proportional to degree of similarity. In this subset the Ras superfamily is shown
to be related to other small GTP-binding proteins. (adapted from Yona et al., 2000).

induce a distance measure between all pairs of sequences. Two issues worth keeping in mind when
evaluating such an algorithm are the correct handling of multi-domain proteins which are affine
to several single domain clusters, and the danger of false associations arising from these instances.
Consider, for example, two single domain proteins, a having domain A and b coding for domain B,
and a multi-domain protein c having both domains A,B. Protein c is thus similar to both a and b,
yet a and b themselves have nothing in common and we would not want them clustered together.
The different databases approach these issues using different methodologies.

In ProtoMap (Yona et al., 2000) all three common measures of pairwise similarity (Smith-
Waterman, Fasta, and Blast) are combined with two different scoring matrices of amino acid sub-
stitution costs (known as Blosum 50 and Blosum 62; Henikoff and Henikoff, 1992) to create an
exhaustive list of neighboring sequences per each sequence in the Swissprot and Trembl databases.
From these one can devise a conceptual complete weighted graph, where each sequence is rep-
resented by a node, and each edge length is the pairwise distance between the two sequences it
connects. However, for statistical soundness, the weight of an edge connecting two sequences is
chosen not from the raw scores but based on expectation values of the similarities between the two
sequences. Clusters of related proteins correspond to strongly connected components of this graph.
Subsequent analysis is aimed at automatically detecting these sets.

The bottom-up analysis starts from a very conservative classification, based on highly significant
similarities, which generates many small sets. Subsequently, classes are merged to account for less
significant similarities. Merging is performed by a two phase algorithm. First, the algorithm
identifies groups of possibly related clusters, based on transitivity and strong connectivity, using
local considerations. Then, a global test is applied to identify nuclei of strong relationships within
these groups of clusters, and clusters are merged accordingly. This process is iterated at varying
thresholds of statistical significance (or confidence levels), where at each step the algorithm is
applied to the classes of the previous classification, to obtain the next one, at a more permissive
threshold. Consequently, a hierarchical organization of all proteins is obtained (see Figure 2.6).
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Protomap, which has spawned two daughter databases, underwent several conceptual changes
recently. Additional tests were incorporated in the process of deciding whether two clusters should
be merged, or not, to further avoid biologically misguided actions. Conceptually, Protomap has
moved from a hard clustering scheme, where each protein sequence belongs to a single set at each
phase, to a soft clustering paradigm where sequences are assigned only probabilities of being a
member of any given set. A set, in this terminology, consists of an appropriate weighting of all
sequences which are sufficiently affine to it. This conceptual change tries mainly to address the
proper handling of multi-domain proteins. In a hard clustering whole sequence approach associating
a multi-domain protein to either of the single domains within it hides its relationship with all the
others.

ProtoNet (Sasson et al., 2003), the first daughter database of Protomap, has kept the concep-
tual bottom-up agglomerative hard clustering approach. Protonet emphasizes the structure that
underlies the repeated merger steps, which is generated in the following manner: At the beginning
of the procedure represent each protein sequence by a node. After the first merger step, take each
resulting set of proteins, and connect all corresponding nodes to a novel one. This new node rep-
resents the set of proteins. The next merger step works at the level of these new nodes, and also
includes all protein nodes not grouped in the first stage. For each set of these, now merged into a
new super-set, add a node, and connect the representative nodes to it. When the iteration process
terminates we are left with a mathematical object known as a forest - a group of trees where the
original protein sequences are the leaves, and higher level nodes represent merged sets of all the
sequences at their leaves. We can now map to this structure additional standard graph theoretic
terminology, such as tree roots, children nodes, etc.

A normalized distance measure is imposed, through a series of definitions, to obtain a distance
measure between any pair of sequences in the same tree. Protonet currently bases its distance
measure only on Blast pairwise scores, but it experiments with three types of averaging in defining
the distances (and subsequent merger decisions), yielding in effect three, non-identical hierarchical
views of the known protein world.

Similar approaches are used to generate the CluSTr (Kriventseva et al., 2003) and SYSTERS
(Krause et al., 2000) databases. Both also start from an all against all pairwise comparison, and
carry an analysis at different levels of protein similarity, yielding a hierarchical organization of
clusters. However, Clustr relies on the Smith-Waterman algorithm as the basis for its scoring
mechanism. It uses Monte-Carlo simulation mediated Z-scores to estimate the statistical signifi-
cance of similarity between potentially related proteins. Systers starts from a set of weak Blast hits,
which are symmetrized using local pairwise alignments, and assigned E-values. Both subsequently
apply a standard single linkage clustering algorithms, which Systers augments with procedures for
separating minimally overlapping sub-clusters.

BioSpace (Yona and Levitt, 2000), the other offspring of Protomap takes a step further and
tries to merge sequence and structure classification into one coherent view. As a first step sequence
based clustering is performed on the protein domains in the Scop database. While the structural
information and hierarchical classification of Scop are both dropped, this initial step is still per-
formed not on whole, possibly multi-domain proteins, but on single structural domain sequences.
A profile is generated from each resulting cluster, and a database of all known protein sequences is
searched using PSI-BLAST (Altschul et al., 1997).

Psi-blast is an iterative extension of the pairwise homology search tool Blast. Given a query
sequence, the first step is to perform a Blast search against the given database. A human or
an automated decision is taken as to which of the top ranking matches are retained for the next
iteration. These kept sequences are processed automatically into an alignment according to their
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best matching path to the query sequence. A subsequent search is performed with this profile
against the database, trying to discover more distant homologies. This can be iterated a sufficient
number of times, or until no further sequences join in.

In Biospace this procedure is started from a phase where a profile already exists, of the family
members in a set. The result of these procedures are called type-I clusters, each having at least one
solved structure from the Scop seeds. The remaining sequence space is clustered using Psi-blast,
repeatedly starting from each yet unclustered sequence. At the last step these structure-less type-II
clusters are merged with the type-I clusters to arrive at an automated Scop-like hierarchy of folds,
super-families and families.

2.3 Protein Sequence Segmentation

In a recent survey of the structural genomics goal, Liu and Rost (2002) claim that clustering efforts
which treat each input sequence as a whole are doomed to failure. The authors go on to demonstrate
that segmentation of protein sequences into their respective domains is a necessary step in all such
attempts.

Protein segmentation is also important for other purposes. For example, nuclear magnetic
resonance (NMR) methods of structure determination are generally limited to short amino acid
sequences which exhibit well defined structure. Also, in recent studies of protein-protein interactions
(surveyed in Salwinski and Eisenberg, 2003) one often comes up with a list of proteins all shown to
interact with a given protein. It is plausible then to hypothesize that all sequences in the list share
a common structural domain which confers to them this specificity.

Goal. Given a set of unaligned, unlabeled protein sequences, detect all domains within the set,
and segment the sequences to delineate the correct boundaries of each domain instance.

Protein segmentation from sequence information alone is a difficult task, made hard by our
lack of deep understanding of the mapping between sequence and ensuing structure. Consider the
small motivating example illustrated in Figure 2.7. Eight proteins are schematically drawn there,
each having one or two structural domains. Yet, they share among them but five domains, in eight
different combinations. A naive all-against-all pairwise comparison yields the similarity matrix of
Figure 2.7 (right). Deducing the right number of domains, let alone their correct boundaries, is not
trivial.

In the previous section we have touched on methods that try to address the segmentation
challenge indirectly. Such are the attempts to soft cluster whole sequences into several sets simul-
taneously, and those starting a clustering effort from all known structural domain seeds. In this
section we review computational efforts that try to address this challenge explicitly.

2.3.1 Alignment Based Methods

Greedy Segment Elimination

ProDom (Corpet et al., 2000) defines domain borders based on the local alignment obtained
by Psi-Blast recursive homology searches (Gouzy et al., 1999). First, profiles are constructed
for domains with known boundaries and the matches are pulled out from the sequence database
by profile searching. If the extracted domain is not terminal in a protein sequence, the remaining
sequence is cut into two parts that become two independent entries in the searched database. Other
families are built iteratively, also based on Psi-Blast, by repeatedly drawing the shortest remaining
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Figure 2.7: The Diversity of Protein Domain Combinations. (left) We illustrate eight proteins
(named by their PDB codes) containing five different domain types. Domain types are drawn in a uniform
pattern and parts of multi-domain proteins are joined by thick lines. The vertical arrangement of domains
inside each box represents a multiple alignment. For example, there are four immunoglobulin-like domains
at the far left, two of which belong to one protein. (right) Similarity matrix of the eight proteins. Each
cell is shaded in proportion to the pairwise similarity between the two respective sequences. (adapted from
Heger and Holm, 2000).

sequence to be used as a seed for the next Psi-Blast search. Each time a domain family is found,
the corresponding fragments are extracted, as in the first step, from the depleting database. The
process ends when Psi-Blast no longer finds any similarity between the remaining sequences.

The greedy elimination strategy determines to a large extent the resulting cluster identities
and compositions. Also, at larger evolutionary distances, local sequence alignment methods may
only detect a diminishing region of similarity, so that alignment borders no longer correspond to
structural domains but represent conserved motifs, e.g., an active site vicinity, thereby inducing a
problem of excessive fragmentation. Indeed, when known domains are generated by Prodom they
tend to be shorter than those assigned from known protein structures (Liu and Rost, 2002). This
has led to the recent integration of Pfam-A profiles and manual expert advice to correct Prodom
border assignments.

Evolutionary History Tracking

Domaination (George and Heringa, 2002a) also uses a Psi-Blast driven iterative procedure. In-
stead of taking the minimal overlapping segment it studies the empirical distribution of observed N-
and C- termini in the aligned sequences to identify potential domain boundaries. The underlying
algorithm puts special emphasis on trying to infer the evolutionary history of the query sequence
from related matches. Explicit searches are performed for evidence of domain deletion, domain
shuffling, circular permutations of secondary structures and discontinuous domain assignments.

Special attention is also paid to tuning Psi-Blast searches to balance specificity and sensitivity,
to avoid narrow pre-mature convergences on the one hand and drifting of the iterative process
towards non-related sequence attractors on the other. Still, the assignment of a wrong member
early on may very well pull in many other sequences unrelated to the query sequence.

Transitive Domain Delineation

DOMO (Gracy and Argos, 1998b) estimates the locations of domain borders in long sequences by

25



Chapter 2

transitively mapping the positions of known N- and C- termini to aligned sequences (Gracy and
Argos, 1998a). First, pairwise sequence similarities are detected based on statistical significance of
amino acid and di-peptide composition similarity, and local sequence alignments. Such ungapped
regions are clustered into blocks called anchors. At this stage suspected fragments are eliminated,
and all anchors are iteratively intersected to delineate proper sequence positions for domain termini.
These fragments are then weighted and multiply-aligned, allowing for gaps for the first time in the
process, through hierarchical clustering and comparison of domain profiles. Finally, the multiple
alignments are extended towards sequence termini, conditioned on an acceptable level of similarity
among constituents.

The fact that sequence delineation is performed prior to multiple alignment generation requires
careful elimination of all fragments, which can be a difficult task given the uncertainties in eukary-
otic exon prediction, and the existence of relatively short domains which appear in many domain
combination contexts.

Multiple Alignment Dissection

Picasso (Heger and Holm, 2001) takes an opposite approach to Domo, aligning first and delineating
only afterwards. It starts from highly overlapping sequence neighbourhoods revealed by all-against-
all pairwise Blast alignment. Overlaps are then reduced by merging sequences or parts of sequences
into multiple alignments. Merging proceeds agglomeratively, starting from many small clusters
(multiple alignments) defined at high confidence. The decision of merging is based on the score
of profile-profile comparison. At the end of this stage, each part of a sequence is covered by at
least one multiple alignment. Definition of explicit domain boundaries is avoided while generating
the multiple alignment covering. Instead, the domain composition is analyzed afterwards using set
theoretic concepts, applied to parts of sequences. The key idea is to identify closed neighbourhoods,
where one cluster contains all members that are linked by similarity, and no member has any
neighbour outside of the cluster. Sets of domains that are neighbours of each other and recur,
embedded in different protein contexts that are not related to each other, are searched for, based
on their association with different sets of neighbours.

However, the use of extensive profile comparison, which is strongly influenced by seed alignment
compositions, may lead to instability of the iterative profile searching process. Also, sequence-based
domain definitions, focusing mostly on conserved blocks in a multiple alignment, has been shown
to not necessarily reproduce structural domains (e.g., by Elofsson and Sonnhammer, 1999, who
compared Pfam-A and Scop domain assignments).

Similarity Matrix Based Methods

GeneRAGE (Enright and Ouzounis, 2000) focuses primarily on the results of all-against-all Blast
comparisons of complete sequences. First a boolean similar/dissimilar matrix of all comparisons
is generated using cut-off thresholds. Pairwise asymmetries are resolved using the symmetric
(but computationally costlier) Smith-Waterman scores. Multi-domain combinations are searched
through non-transitivity of similarity. Namely, if A and B are similar to C, but not to each other,
C is hypothesized to be a multi-domain protein (e.g., sequences 1exg, 1ayx and 1tf4A in Figure 2.7,
left). Clustering is then performed on all supposedly single domain proteins and the hypothesized
multi-domain ones are then used to search for instances where further cluster splitting is required.

The non-transitivity approach to exact segmentation is known to be hampered by nested domain
composition similarities (such as A contained in AB contained in ABC), erroneous alignments and
fragmented sequences (e.g., Gracy and Argos, 1998a). Indeed, this approach reportedly suited
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prokaryotic genomes, but did not scale well to eukaryotes where sequence fragments, complex
domain combinations and shared domain elements abound (Enright et al., 2002).

TRIBE-MCL (Enright et al., 2002), by the same authors takes a different path from the
same starting point, converting the all-against-all Blast matrix into a probabilities matrix. This
is subsequently soft-clustered using an empirically-motivated iterative procedure. However, as in
the revised Protomap database, multi-domain proteins appear as belonging to several clusters, and
explicit domain delineation is not tackled.

2.3.2 Handling Unaligned Datasets

All the methods surveyed above rely, in one way or another, on aligning two or more sequences
against each other. Pairwise alignment is indeed optimally solvable in terms of edit distance cost
using the Smith-Waterman algorithm. However, especially for more distantly related proteins,
the scoring function maximum does not necessarily coincide with the biologically correct alignment
inferred via structure comparisons and related means. Moreover, scaling-up of the Smith-Waterman
score is exponential in the number of sequences to be aligned, and thus impractical. Iterative
methods, such as Psi-Blast which compare and add sequences to profiles are sub-optimal heuristic
approximations to the optimal multiple alignment score. Despite these reservations alignment-less
analysis of biosequences is largely restricted to the discovery of relatively short and simple patterns
which are over abundant in the given set (reviewed by Brazma et al., 1998). We briefly survey
several representative approaches, giving mathematical details for one method which is akin to
ours.

Combinatorial Approaches

Combinatorial approaches aim to consider all patterns from a certain pre-defined set that appear
within the dataset. Of these they output a subset of patterns which answer over-abundance criteria.

One such example is Teiresias (Rigoutsos et al., 1999) which systematically enumerates all
maximal patterns in the given set that pass a predefined minimal number of occurrences.

Other tools use probabilistic modeling assumptions to define the expected abundance of different
patterns, such as Verbumculus (Apostolico et al., 2000) which uses an assumed background
probability distribution, and efficiently computes the abundance of observed patterns in units of
standard deviation compared to the expected frequency of their occurrence.

Several similar approaches also exist, but are typically limited to relatively short, contiguous
patterns due to their exhaustive nature.

Probabilistic Approaches

We term as probabilistic, approaches which do not attempt to consider every pattern of some
predefined set. Rather such approaches typically search in a stochastic manner for over abundant
patterns, from heuristically chosen starting points. We present one such tool in relative detail, as
the approach it uses is akin to the one we will employ in our segmentation efforts later on.

This tool is called MEME (Bailey and Elkan, 1994). Meme uses an expectation maximization
(EM) algorithm (Dempster et al., 1977) to search for probabilistically over-abundant gapless PSSMs
of a given length range in the unaligned sequences, in the following manner.

Let x̄ = x1 . . . xn represent the set of sequences, where each xi obtains a value from an alphabet
Σ of size L. We assume x̄ has been generated by a background model we denote θ1, except
for several planted occurrences of a motif of length W , generated by another probabilistic model
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θ2. This type of model is termed a two component finite mixture model. We further assume
the background model to be governed by a multinomial distribution θ1 = {f0j}j=1...L where each
symbol xi is generated independently according to θ1. Each occurrence of the motif is governed by a
gapless profile model (Section 2.2.1) θ2 = {fij}

i=1...W
j=1...L . Each of the i = 1 . . . W symbols is generated

independently from the multinomial distribution {fij}j=1...L. We define a prior probability of
choosing either of the two models λj = P (θj) for j = 1, 2, and assume that x̄ was generated in the
following manner: Choose either model with probabilities λ1, λ2; Generate W symbols according to
the chosen θj; Repeat until you have generated all of x̄. We will jointly denote the mixture model
parameters by Λ = {λ1, λ2, θ1, θ2}.

The above procedure defines a segmentation process which we will denote by another set of
random variables z = {zij}

i=1...n
j=1,2 . In principle these are zero-one variables, such that zij = 1 iff xi

was generated by θj . However, as in the HMM case, this set of variables is hidden and cannot be
observed directly. Instead, we use them as a set of probabilistic estimators, such that zij denotes
the probability estimate that xi was generated by θj.

Our objective is to find a set of model parameters Λ that maximizes the likelihood of the
data given the model, P (x̄|Λ). This goal has been termed the learning problem in HMM context
(Section 2.2.1), and indeed x̄ plays the role of the observed sequence O, and the segmentation z
is akin to the hidden series of state transitions Q. As in the HMM scenario we define an iterative
procedure which is an instance of the EM algorithm: Start with an initial guess of model parameters
Λ0. Next, for τ ≥ 0 deduce a segmentation using Bayes rule

∀i, j : zτ
ij =

λτ
j p(xi|θ

τ
j )

∑2
k=1 λτ

kp(xi|θτ
k)

Then find a novel set of parameters that solves

Λτ+1 = arg max
Λ

∑

i,j

zτ
ij log λjp(xi|θj)

Here as well, the maximum can be solved analytically. It can be shown (e.g., Durbin et al., 1998)
that for every such iteration P (x̄|Λτ+1) ≥ P (x̄|Λτ ). Thus, this procedure converges to some local
maximum of the likelihood function.

The Meme algorithm uses additional heuristics. It transforms the input sequence into a set of
overlapping W -mers, on which the segmentation is performed. During each EM step, the optimal
Λτ+1 parameters are smoothed, as in the HMM case, to address small sample size over-fitting,
using user defined prior counts. The EM procedure is also strongly dependent on the initial guess
Λ0 because it is essentially a gradient ascent method. Every improvement beyond the initial
set of parameters improves the likelihood function. As a result a relatively small region of the
parameter space is searched prior to convergence. Meme addresses this issue by running the EM
procedure multiple times employing further heuristics to select different promising starting points.
The converged model that maximizes P (x̄|Λ) is returned.

Other tools use Gibbs sampling methods to stochastically search for similar patterns (Lawrence
et al., 1993). Gibbs sampling algorithms combine gradient ascent steps with random search space
jumps. The latter allow the exploration of larger parts of the parameter space per run but can also
cause the procedure to spend many more increments before converging. In both approaches the
resulting patterns are not guaranteed to be the optimal ones.

An interesting extension of Meme, termed Meta-MEME (Grundy et al., 1997) takes as input
the unaligned sequence set and the MEME generated motifs. From these Meta-Meme concludes
the best observed linear ordering of motifs in the set. A motif-based HMM is then built where
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Figure 2.8: Meta-Meme motif-based HMM. The Meme algorithm is run on an input set of unaligned
sequences and obtains several over-abundant motifs. Each of these is represented in the form of an ungapped
profile, similar to a single Blocks model (top). The Meta-Meme algorithm then orders these linearly and
builds a unified simplified HMM. In this model each motif profile is represented by a set of match states
(e.g., states 1–3 above), and each spacer between two consecutive motifs, as well as before the first and after
the last motif, is modeled by a single self-referencing insert state. The resulting model is much simpler than
the profile HMMs of Figure 2.5, and resembles a Blocks fingerprint. (adapted from Eddy, 1998b).

each motif is modeled by a fixed length series of match states, and each spacer region is modeled
by a single self referencing insert state (Figure 2.8). This reduction in the number of parameters
compared to a profile HMM allows Meta-Meme to be more accurately trained from smaller sets of
sequences. While no claim is made as to whether these heuristically found motifs are guaranteed
to span the length of an unaligned domain, Meta-Meme does attempt to provide a statistical
fingerprint (Section 2.2.1) of the region it models, by searching databases for homologs using the
resulting model.

Homogeneity Segmentation

The approach we will subsequently develop towards sequence segmentation is also akin to another,
albeit simpler computational goal. That is the segmentation of biosequences (DNA, RNA, pro-
teins), into regions, each of which is homogeneous with respect to some property. Such efforts are
applied to multiple alignments as well as unaligned sequences. Segmentation is performed accord-
ing to relatively simple criteria such as base or amino acid compositional homogeneity, or regions
exhibiting roughly similar positional variability (in alignments). These approaches includes works
by May (2002); Ramensky et al. (2001); Xing et al. (2001) and references therein.

Our, more ambitious effort, in Chapter 5, will attempt to unify these two goals by simultaneously
segmenting and clustering unaligned sequences into regions sharing higher order statistics.

2.3.3 Other Approaches

Wheelan et al. (2000) have demonstrated that simple collected statistics of domain size, and domain
segment size distribution can allow one to guess with partial success the boundaries for relatively
short sequences of up to 400 amino acids. This work serves as a representative example for inte-
grating additional considerations into the complete prediction schemes above.

SnapDRAGON (George and Heringa, 2002b) employs an ab initio folding algorithm based on
physico-chemical properties to generate a large number of 3D models for a given multiple alignment
with predicted secondary structure. Assuming that hydrophobic residues tend to cluster together in
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space, domain boundaries are assigned automatically to each model. A final prediction is obtained
by examining the consistency of these.

Several other preliminary approaches, including neural network based tools, are reviewed by
Liu and Rost (2003).

2.3.4 Integrative Resources

Having realized that no single classification or segmentation approach is uniquely superior to its
counter-parts, the bioinformatic community now advocates the use of practically all established
tools to obtain different views on the nature of the sequences at hand. In order to facilitate this
approach, meta-databases are being developed.

Goal. Given an unlabeled protein sequence, query with it several of the above databases. Then
present one coherent view of the results, resolving conflicts correctly by estimating the strong points
of each queried resource.

InterPro (Mulder et al., 2003) is an integrated documentation resource for protein families,
domains and sites. InterPro combines the following databases, all of which have been introduced
above: Prosite, Prints, Pfam, Smart, Tigrfams and Prodom. Rather than simply displaying the
results, Interpro provides internal consistency checks and deeper coverage making it more efficient
and reliable than using each of the pattern databases separately. The united approach improves
the utility and the coverage of pattern databases, pin-points weaknesses and facilitates their further
development.

Two other meta-databases are MetaFam (Shoop et al., 2001) and iProClass (Huang et al.,
2003). Metafam is built from ten protein family databases, including several fully automated ones.
On top of these it automatically builds supersets that facilitate comparing the different underly-
ing approaches. Iproclass tries to provide comprehensive protein annotation at many sequence,
structural and functional levels. It provides rich links to over fifty databases of protein families,
functions and pathways, protein-protein interactions, post-translational modifications, structures
and structural classifications, genes and genomes, ontologies, literature, and taxonomy. Compre-
hensive reports are generated at both the sequence level and the super-family level, summarizing
and linking to the many available information sources it incorporates.

These databases face non-trivial challenges, because sequence databases generally contain poor
positional pointers of functional domains, and include second-hand, erroneous annotations. These
errors percolate through the databases which reference and use each other to update. As a result
they often cannot be traced back to the chain of decisions which led to their formation (Gilks et al.,
2002).

2.4 Discriminative Analysis

In the previous sections we have discussed the segmentation of protein sequences into their un-
derlying domains and the classification of novel sequences into their respective families. However,
many protein families contain several functional sub-types such as different substrate specificities.
As discussed in Section 1.2, these functional differences define a further classification level into
distinct sub-families. Sequence based classification into the different sub-families is a challenging
task. While the entire sequences are subject to diverging mutational forces, functional variation
often depends only on a small subset of the variable positions.
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Goal. Given a set of unaligned protein sequences, tagged as belonging to distinct sub-families,
generate a model which can correctly classify novel sequences into the sub-types. Furthermore,
analyze the resulting model to detect residues that best discern between the different sets.

For the main objective, one supposedly could apply the classification approaches advocated in
Section 2.2 in the context of families and super-families. However, Prosite regular expressions will
not do, as it is seldom that sub-types differ in one short contiguous region and in a form that can
be characterized by deterministic signatures. On the other hand the scores of probabilistic profiles
and HMMs are accumulated over entire sequences, giving no special preference to any alignment
position. From this point of view often the sequences in a family are all too similar to each other
to allow a meaningful separation. The only viable approach of those is the sequence fingerprints
approach taken by the Prints database. However, for the second objective, Prints fingerprints
are too long and are chosen with no direct correlation to specific residues that differ between the
sub-types.

Most tailored methods rely on a multiple alignment of the family sequences, as well as a phyloge-
netic tree inferred from it. Indeed, when the resulting tree can be constructed accurately, functional
sub-types can often be identified with sub-trees within it. This observation has also been a starting
point to works which try to automate the division of a protein family into its underlying sub-families
by collapsing nodes of the phylogenetic tree (e.g., Wicker et al., 2001). Other methods use multiple
alignments and phylogenetic trees to try and predict the functionally important sites which are
conserved within the sub-families while variable between them. For example, three different repre-
sentative methods are compared in del Sol Mesa et al. (2003). The first method takes as a starting
point a phylogenetic representation of a protein family and, using measures of divergence between
site distributions, automatically searches for a division of the family into sub-families. The second
method looks for positions whose mutational behavior is similar to the mutational behavior of the
full-length proteins, by directly comparing the corresponding distance matrices. The third method
performs vector-based principal component analysis on distributions of sequences and amino acid
positions in corresponding multidimensional spaces.

However, the division of proteins into functional sub-types cannot always be accomplished by
phylogeny. In families which have evolved over a long period of time, or were subjected to rapid
evolution, phylogeny often cannot give a clear division. In addition, proteins usually have multiple
features that co-evolve, at different rates, making phylogenetic inference more complicated. Finally,
molecular function may also evolve convergently, particularly where specificity is conferred by few
residues.

In the remainder we focus on a representative work that tries to predict sub-type assignment
for novel sequences, and to deduce the residues which confer sub-type specificity using HMMs.
Hannenhalli and Russell (2000) start from a multiple alignment of the family representatives, where
each sequence is labeled by its sub-type. For each sub-type s they train an HMM from the alignment
of available sequences of that type, correcting for small sample size and sequence bias. They then
normalize the HMM score profile to obtain probabilities of observing symbol x at position i in
sub-type s, denoted P s

i (x), such that

∀i, s :
∑

x

P s
i (x) = 1

For a sub-type s let s denote the union of all sub-types excluding s. The score of an alignment
column is defined by comparing the statistics of each sub-type to the union of all others, using the
Kullback-Leibler divergence measure between two distributions (Cover and Thomas, 1991). The
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Figure 2.9: Alignment scoring for sub-family specificity. An alignment of representatives from the
two sub-families of nucleotidyl cyclases, one acting on GTP and the other on ATP. High scoring residues
according to Hannenhalli and Russell (2000) are highlighted. Only regions of high-scoring columns are
shown, whereas skipped regions are indicated by dashes. Numbers above the alignment correspond to a
representative family member with solved structure (PDB code 1ab8). For this set, Tucker et al. (1998) have
shown that a simultaneous change in residues 938 and 1018 suffices to change protein function from that of
one group to the other. (adapted from Hannenhalli and Russell, 2000).

divergences of all sub-types are summed to obtain a column score,

Ci =
∑

s

∑

x

P s
i (x) log

P s
i (x)

P s
i (x)

These scores are then normalized using their empirical mean µ and standard deviation σ to obtain
Z-scores,

Zi =
Ci − µ

σ

Using empirical calibration, a threshold of Zi > 3 is chosen, as it is often seen to correlate with
specificity determining positions. The specificity conferring amino acids are searched for in the high
scoring columns by computing the ratio

Ls
i (x) =

P s
i (x)/P s

i (x)
∑

y P s
i (y)/P s

i (y)

The threshold Ls
i (x) ≥ 0.5 is then chosen, based on further empirical calibration, for reporting

specificity conferring amino acids.
Figure 2.9 shows the results of applying this method to the nucleotidyl cyclase family. This

family includes membrane attached or cytosolic domains that catalyze the reaction that forms a
cyclic nucleotide monophosphate from a nucleotide triphosphate. The known cyclases act either
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on GTP (guanalyate cyclase) or ATP (adenylate cyclase), forming two functionally distinct sub-
families. Representative members of both sub-families are shown aligned in Figure 2.9. Columns
scoring Zi > 3 are numbered in the figure, and individual residues are highlighted within each such
column whenever Ls

i (x) ≥ 0.5 for the respective amino acid in that particular sub-type. Tucker et al.
(1998) have shown that mutations of two specific residues are sufficient to change the specificity of
the enzyme from GTP to ATP, or vice versa. These residues, numbered 1018 and 938 in the figure,
receive first and third Z-score ranks, respectively. However, the second ranking residue, no. 1014,
does not seem to confer specificity in family members.

To classify a novel family sequence into a certain sub-type, the authors compare Blast and
HMM based scoring schemes to a sub-profile score,

Sc(x1 . . . xn|P
s) =

∏

i: Zi>0

P s
i (xi)

which eliminates contributions from non discriminating alignment positions. It is shown that in
most cases the sub-profile scoring scheme indeed out-performs the other methods.
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Chapter 3
Markovian Protein Family Classification

In this chapter we define the variable memory modeling framework which is at the center of this
thesis. We adapt one such learning algorithm to the challenge of protein sequence modeling and
demonstrate its ability to classify protein sequences into their respective families.

3.1 Markovian Sequence Modeling

We begin by recalling the task of supervised protein sequence classification, surveyed in Section 2.2.1

Goal. We are first given a family seed SF of m proteins {s1, s2, . . . , sm}, each represented by its
primary sequence alone. These proteins are all tagged as members of a potentially larger protein
family F ⊇ SF . We are then confronted with a database D of many protein sequences, some of
which belong to F , but not necessarily to SF . Our goal is to pick from the database all proteins
that belong to F , and only these.

As we saw in Chapter 1, the databases we wish to examine can be as large as hundreds of thou-
sands of individual sequences. The discrimination task must therefore be performed automatically.
Given a family seed we shall build a computational model MF . When observing a novel sequence
s ∈ D, this model will be capable of deciding whether s ∈ F , or not.

All protein family classification models reviewed in Chapter 2 can be cast this way. The most
prominent of these, the HMM, relied on the fact that a common evolutionary source allows to align
family members to each other meaningfully, and that different positions along a protein multiple
alignment show different preferences for specific amino acids. We turn to define a different approach
to the same problem, termed variable memory modeling (VMM), which will be the focal point
of this thesis. This approach, originally defined by Rissanen (1983), will have certain noticeable
advantages over HMMs, and will also lead us to further, more ambitious applications.

As with HMMs, we will try to fit the data with a generative model. We recall from Chapter 2
that for each query sequence s we will compute the probability P (s) that this sequence was gen-

erated by our trained model. To obtain a binary decision we will threshold either P (s)
|s| , where |s|

is the length of the query sequence, or P (s)
P0(s) , where P0 models a random protein sequence from no

particular family. In order to recognize members of the family F , we would like to improve the
probability of generating P (s) for all sequences we are given, SF . However, we must do so primarily
using features we believe are shared by all members of F , or we will over-fit the training data,
and will be able to recognize only sequences from SF itself.
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To obtain a probabilistic framework, we treat each protein sequence as a series of random
variables s = s1s2 . . . sl, where each sj obtains a discrete value from a finite alphabet Σ, of 20
amino acids (Figure 1.1). The chain rule of probabilities states that the joint occurrence of any set
of random variables can be decomposed in the following manner

P (s1 . . . sl) = P (s1)
l

∏

j=2

P (sj |s1 . . . sj−1)

Theoretically, We can now estimate all P (sj |s1 . . . sj−1) terms from the sequences in SF to try and
maximize P (s) for all s ∈ F . This approach, however, is clearly both intractable, and extremely
over-fitted to SF itself. Consider that for the j-th such term there are |Σ|j−1 possible contexts
in which we need to be able to predict reliably the identity of the next symbol, sj. Tractable
mathematical models condense the information available in the past, s1 . . . sj−1, which is relevant
to predict the present symbol sj using state variables.

Recall that in a profile HMM context, each amino acid in s is emitted at a specific match
or insert state. These, together with the silent delete states constitute the state variables of an
HMM. Once a path Q through the model is chosen, the sequence context of symbol sj is completely
replaced by the single state qtj from which sj is emitted

P (sj |s1 . . . sj−1) ≈ P (sj |qtj )

We shall take a different modeling approach to summarize past events. First, we approximate
each past term using its fixed length suffix

P (sj|s1 . . . sj−1) ≈ P (sj|sj−L . . . sj−1)

By doing so we effectively try to approximate the sequence generation using a Markov process of
order L. Notice that now our state variables are no longer hidden. For each sj we can deduce the
corresponding state variable from its observed past. This formulation, however, is only meaningful
biologically in the context of an alignment. Due to frequent insertion and deletion events in related
protein sequences, combining P (sj|sj−L . . . sj−1) statistics from these makes sense only when sj re-
lates to the same alignment column. HMM formulation makes this restriction explicit, by replacing
the context altogether with an alignment position variable. Taking an opposite approach, we will
leave only the context, and drop any alignment information, by defining

P (sj = σ0|sj−L . . . sj−1 = σ−L . . . σ−1) = P (c0 = σ0|c−L . . . c−1 = σ−L . . . σ−1)

where c−L, . . . , c0 are position independent random variables, each obtaining a value from Σ. Thus,
in our generative model wherever the immediate past equals σ−L . . . σ−1, we use the same prediction
vector for the next symbol, regardless of the actual position within the sequence at which prediction
is made. Such models are termed stationary, or time-invariant.

So far we have chosen to model our data using an L-order Markov model, which is effectively a
table of P (σ0|σ−L . . . σ−1) terms, of size |Σ|L×|Σ|. However, this modeling approach is problematic
for our needs. On the one hand, choosing a small L yields a very tractable model, but as we will
demonstrate later, it poorly differentiates members of a protein family from other sequences. On
the other hand, increasing L requires an amount of sequence data we typically do not have in SF .
For example, to estimate a full model of size L = 3, we need some idea of the frequency of all
160,000 possible 4-mers.
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The following property helps refine this model. Let the combined length of all sequences in SF

be denoted n. While there are |Σ|L possible L-mers in general, there are less than n− L different
(overlapping) L-mers in SF itself. Therefore instead of modeling using an order L Markov model,
for which we typically do not have enough statistics, we will model sequence generation using
contexts of varying lengths, up to length L. Consider the following modeling approach:

For k = 1 . . . L, examine all P (σ0|σ−k . . . σ−1) statistics that appear in SF ,

Memorize only P ( · |σ−k . . . σ−1) vectors considered typical of F for future predictions.

Before we define which contexts are memorized let us see how the resulting set of contexts, CF ,
is used: For each c ∈ CF , c = σ−k . . . σ−1 we have memorized the distribution vector P (σ|c). For
prediction we use the longest memorized suffix at each position

P (sj = σ0|s1 . . . sj−1 = σ−j+1 . . . σ−1) ≈ P (σ0|max
k≥0
{σ−k . . . σ−1 ∈ CF })

If we ensure that the empty context is also added to CF then the above expression is always well
defined. Also note that we examine less than nL different k-mers which can appear in SF , of all
allowed lengths.

Having defined its subsequent use, we return to resolve the issue of which prediction vectors
P ( · |σ−k . . . σ−1) get memorized during training. Intuitively, there are two relevant aspects:

1. How frequent the suffix σ−k . . . σ−1 is in the training set SF . Infrequent suffixes may yield
under-sampled non-representative distributions which are best avoided.

2. Aiming to obtain compact models, it is also useful to ask whether adding the suffix will yield
significantly different predictions.

Throughout the thesis we will experiment with different quantitative answers that try to combine
these two criteria, according to our modeling needs. We turn to define and evaluate a first variant,
put forth by Ron et al. (1996).

3.2 Theory

A Prediction or Probabilistic Suffix Tree (PST) over an alphabet is a non empty tree, whose
nodes vary in degree between zero (for leaves) and the size of the alphabet. Each edge in the tree
is labeled by a single symbol of the alphabet, such that no symbol is represented by more than
one edge branching out of any single node (hence the degree of each node is bounded by the size
of the alphabet). Nodes of the tree are labeled by a string, which is the one generated by walking
up the tree from that node to the root. Each node is assigned a probability distribution vector
over the alphabet. When the PST is used to predict significant patterns within a query string (i.e.,
segments of high probability), this probability distribution vector comes into play. It corresponds to
the probabilities the tree assigns to a query symbol, given that the longest subsequence of symbols
that have been observed before it in the query matches that particular node’s label. An example
of a PST model is given in Figure 3.1.

It should be noted that the PST differs from, albeit is related to, the classical suffix tree, which
contains all the suffixes of a given string (see Gusfield, 1997). Consider, for example, the PST in
Figure 3.1, where we refer to a node using the unique label associated with it. In a suffix tree
the father of node(bra) would have been node(br), whereas in a PST the father of a node is a
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(.2,.2,.2,.2,.2)

root

a

r

ca

rabra

a

r

c

r

b

(.05,.5,.15,.2,.1)

(.05,.4,.05,.4,.1)

(.6,.1,.1,.1,.1)

(.05,.25,.4,.25,.05)(.1,.1,.35,.35,.1)

Figure 3.1: An example of a PST model over the alphabet Σ = {a, b, c, d, r}. The tree is shown in
landscape mode, which makes the prediction step (Section 3.2.3) easier to follow. The root is the rightmost
node. The vector that appears near each node is the probability distribution over the next symbol. For
example, the probability distribution associated with the subsequence ra is 0.05, 0.25, 0.4, 0.25 and 0.05
for the symbols a, b, c, d and r respectively. Thus, the probability to observe c after a subsequence, whose
largest suffix in the tree is ra, is 0.4.

node without the first (as opposed to last) symbol. Here the father of node(bra) is node(ra). The
following observation specifies the relation between the two data structures: The skeleton (nodes,
edges and labels) of a PST for a given input string is simply a subtree of the suffix tree associated
with the reverse of that string. The differences become clear when following the tree construction
procedure, described in Section 3.2.2.

3.2.1 Definitions

Let Σ be the alphabet (e.g., the alphabet of 20 amino acids for protein sequences, or 4 nucleotides
for DNA sequences), and let r1, r2, ..., rm be the sample set of m strings over the alphabet Σ, where
the length of the i-th (i = 1..m) string is li (i.e., ri = ri

1r
i
2...r

i
li
∀ri

j ∈ Σ).
First, we define the empirical probability of a subsequence s over the given sample set as the

number of times this subsequence was observed in the sample set divided by the maximal number
of (possibly overlapping) occurrences a pattern of the same length could have had, considering
the sample size. Formally speaking, given a string s of length l (s = s1s2...sl) we define a set of
variables

χi,j
s =

{

1 if s1s2...sl = ri
jr

i
j+1...r

i
j+(l−1)

0 otherwise

for each i = 1..m and j = 1..li − (l − 1). Such indicator variable χi,j
s has a value of one if and only

if the string s is a subsequence of ri starting at position j.
The number of (possibly overlapping) occurrences of string s in the string set {ri} is given by

χs =
∑

i,j

χi,j
s

The total number of (overlapping) subsequences of length |s| = l within the set {ri} is

N|s| =
∑

i s.t. li≥l

(li − (l − 1))

We choose to define the empirical probability of observing string s as the ratio between these last
two quantities

P̃ (s) =
χs

N|s|
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The exact empirical probability depends on the number of possible occurrences of s in the sample
set. In general, computing the maximal number of possible occurrences of a specific string s is more
complicated and is dominated by the period of that string (the minimal interval which will allow it
to overlap itself). Our definition implicitly disregards the fact that the subsequences accounted for
are indeed overlapping, and therefore are not independent of each other. However, this definition
suffices for our purposes. Note that it also leads to a natural definition of a probability distribution
over all strings of length l since

∑

s∈Σl P̃ (s) = 1.
We go on to define the conditional empirical probability of observing a symbol right after a

given subsequence. This probability is defined as the number of times this symbol has shown up
right after the given subsequence divided by the total number of times this subsequence has shown
up at all, followed by any symbol. Specifically, let χs∗ be the number of non-suffix occurrences of
the string s in the string set {ri}, i.e.,

χs∗ =
∑

σ′∈Σ

χsσ′

Then the conditional empirical probability of observing the symbol σ right after the string s is
defined by

P̃ (σ|s) =
χsσ

χs∗

It is easy to verify, using the above definitions, that the obtained P̃ (σ|s) distribution satisfies the

marginal consistency condition, such that P̃ (σ|s) =
∑

σ̂∈Σ
P̃ (σ̂s)

P̃ (s)
P̃ (σ|σ̂s), yielding a stationary set

of distributions (Ron et al., 1996). Finally, we define suf(s) = s2s3...sl, and sR = sl...s2s1.

3.2.2 Building a PST

First, we define L to be the memory length of the PST (i.e., the maximal length of a possible
string in the tree). We work our way gradually through the space of all possible subsequences of
lengths 1 through L, starting at single letter subsequences, and abstaining from further extending a
subsequence whenever its empirical probability has gone below a certain threshold (Pmin), or once
it reaches the maximal L length boundary. The Pmin cutoff avoids an exponentially large (in L)
search space.

At the beginning of the search we hold a PST consisting of a single root node. Then, for each
subsequence we decide to examine, we check whether there is some symbol in the alphabet for
which the empirical probability of observing that symbol right after the given subsequence is non
negligible, and is also significantly different from the empirical probability of observing that same
symbol right after the string obtained from deleting the leftmost letter from our subsequence1.
Whenever these two conditions hold, the subsequence, and all necessary nodes on its path, are
added to our PST.

The reason for the two step pruning (first defining all nodes to be examined, then going over
each and every one of them) stems from the nature of PSTs. A leaf in a PST is deemed useless if
its prediction function is identical (or almost identical) to that of its parent node. However, this in
itself is no reason not to examine its sons further while searching for significant patterns. Therefore,
it may (and does) happen that consecutive inner PST nodes are almost identical.

Finally, the node prediction functions are added to the resulting PST skeleton, using the appro-
priate conditional empirical probability, and then these probabilities are smoothed using a standard

1This string corresponds to the label of the direct father of the node we are currently examining (note that the
father node has not necessarily been added itself to the PST at this time).
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Build-PST (Pmin, α, γmin, r, L):

1. Initialization: let T̄ consist of a single root node, with an empty label λ,
and let S̄ ← {σ | σ ∈ Σ and P̃ (σ) ≥ Pmin}.

2. Building the PST skeleton: While S̄ 6= φ, pick any s ∈ S̄ and do

(A) Remove s from S̄

(B) If there exists a symbol σ ∈ Σ such that

(I) P̃ (σ|s) ≥ (1 + α)γmin

and

(II)
P̃ (σ|s)

P̃ (σ|suf(s))







≥ r
or
≤ 1/r

then add to T̄ the node corresponding to s and all the nodes on the path to s
from the deepest node in T̄ that is a suffix of s.

(C) If |s| < L then for every σ′ ∈ Σ, if

P̃ (σ′ · s) ≥ Pmin,

then add σ′ · s to S̄.

3. Smoothing the prediction probabilities: For each s labeling a node in T̄ , let

γ̄s(σ) ≡ (1− |Σ|γmin)P̃ (σ|s) + γmin (3.1)

Figure 3.2: The PST Learning Algorithm, adapted from Ron et al. (1996).

technique so that no single symbol is absolutely impossible right after any given subsequence (even
though the empirical counts may attest differently).

In Figure 3.2 we present the procedure for building a PST out of a sample set. The proce-
dure uses 5 external parameters: L the memory length, Pmin the minimal probability for string
occurrence, r which is a simple measure of the difference between the prediction of the candidate
at hand and its direct father node, γmin the smoothing factor, and α, a parameter that together
with the smoothing probability defines the significance threshold for a conditional appearance of a
symbol (an example of an effective set of parameters is given in the legend of Table 3.1). We use T̄
to denote the tree, S̄ to denote the set of (unique) strings that we need to check, and γ̄s to denote
the probability distribution (over the next symbol) associated with the node s.

The final step (step 3) of the learning algorithm is the smoothing process, which assures that
no symbol is predicted to have zero probability, independent of the suffix observed before it. The
value of γmin defines the minimum probability for a symbol, and the empirical probabilities should
be adjusted to satisfy this requirement. This is done by decreasing the empirical probabilities,
such that a total of |Σ|γmin is “collected”, to be later shared by all symbols. The decrement
of each empirical probability is done in proportion to its value, by solving the set of equations
∀σ ∈ Σ, γ̄s(σ) = k ∗ P̃ (σ|s) + γmin under the normalization constraint

∑

σ∈Σ γ̄s(σ) = 1. This
yields k = (1−|Σ|γmin) constrained by γmin < 1

|Σ| to assure non-negative values, and Equation 3.1
follows.

Returning to the PST of Figure 3.1, we can now give two exemplary observations on the data
set from which the model was learned: First, in the training set there must be an overall clear
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preference for observing the letter b after the letter a (as γ̄a(b) = 0.5), unless the a itself was
preceded by an r, in which case the preference is for c (as γ̄ra(c) = 0.4). Second, assuming that
γmin was set to 0.05, and examining the probability vector associated with node(ca), we can infer
that only three different symbols, b, d and r, were observed in the training set succeeding the
subsequence ca, in quantities that obey the ratio 7 : 7 : 1, respectively.

Theoretical Motivation

PSTs are a subclass of probabilistic finite automata (PFA). We use a PST model to approximate
the natural source, learned from the family seed of protein sequences. Machine learning theory
holds strong indications that efficient learning of general PFA sources is not possible (e.g., Kearns
et al., 1994). Related works show that general HMMs cannot be trained or inferred efficiently (Abe
and Warmuth, 1992; Gillman and Sipser, 1994, respectively). For PSTs, however, the opposite is
true, as the following theorem shows.

Theorem. (Ron et al., 1996) Given a bound L on the depth of a source PST, and a bound n on
its size, the algorithm of Figure 3.2 will generate a model arbitrarily close to the source PST, from
a set of sequences generated by the source model, in time polynomial in L, n, the alphabet size |Σ|,
and the desired accuracy parameters.

This result was later extended by Bühlmann and Wyner (1999) to also include certain classes
of non-stationary PST sources. Empirically, these results indicate that PST training is poten-
tially easier than HMM calibration, and may require a smaller, less optimal family seed to obtain
separation.

A PST variant incorporating biological considerations

The basic PST model does not require any assumption on the input data, nor does it utilize any
a-priori information we may have about the data. Incorporating such information may improve the
performance of this model, since it adjusts the general purpose model to the specific problem of
identifying significant patterns in macromolecules, where some characteristic features and processes
are observed. Specifically, the information we would like to consider is the amino acids background
probabilities, and the amino acids substitution probabilities. These distributions are integrated
into the PST model and some changes are made to account for this a-priori information.

Few additional definitions are needed here: Let qab be the probability that amino acid a is
replaced by amino acid b (a, b ∈ Σ). Also, define χ̄s as the number of distinct sequences which
include the subsequence s. This number is required to exceed a certain threshold Nmin, which is
defined in proportion to the total number m of strings in the sample set (i.e., Nmin = c ·m where c
is chosen to be, say, 0.2 so that the subsequence s is required to exist in at least 20% of the member
proteins). Alternatively, this parameter can be set to a constant value regardless of the actual size
of the training set.

Finally, the last step (step 3) of the learning algorithm (the smoothing step), is modified, and
it is now based on a position-based pseudo-counts method (similarly to the method suggested by
Henikoff and Henikoff, 1996). This method adds hypothetical counts to the sample set in order
to avoid zero probabilities which are due to under-sampling. The number and the distribution of
pseudo-counts is “position-based” (i.e., different for each node) and takes into account the diversity
(the number of different amino acids observed after the corresponding subsequence), as well as the
counts of actually observed amino acids.
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For a node represented by the subsequence s, denote by Rs the diversity at s (number of different
amino acids observed after s),

Rs = |{σ | χsσ > 0}|

Denote by Bs the total number of pseudo-counts added to node s. We set Bs = µRs, as suggested
in Henikoff and Henikoff (1996), where µ has been optimized for best performance. Then, the
number of pseudo-counts of amino acid a at this node is given by

ba = Bs

20
∑

i=1

Prob(i|s) · Prob(a|i)

= Bs

20
∑

i=1

χsi

χs∗
·
qia

Qi

Where Qi =
∑20

k=1 qik. The probability of observing a after the string s is defined as the weighted
average of the empirical probability P̃ (a|s) and the a-priori probability as defined by the pseudo-
counts, Ppse(a|s) = ba/Bs.

The modified procedure is described in Figure 3.3. We briefly summarize the changes with
respect to the external parameters: Nmin substitutes Pmin, while the pseudo counts matrix replaces
γmin in smoothing, leaving γ to take over for α and γmin in threshold determination.

Incremental model refinement

A useful and very practical feature of the PST learning algorithm is the ability to refine any given
PST model (over the same training set it was originally grown from) without the need to re-iterate
calculations which have already been made while building the original model. Given the PST model
to be further expanded, denoted T0, one can, by relaxing the original learning parameters, in any
of the ways described below, extend the model without repeating any of the calculations taken
in building T0 itself. In order to increase the number of nodes to be considered for inclusion in
the resulting PST model one may lower Pmin or increase L. In order to alleviate the criteria for
acceptance into the tree one may lower r towards 1, or α towards (−1). Once the relaxed set of
parameters has been chosen (any subset of them may be relaxed simultaneously) and T0 has been
passed to Build-PST, the initialization step of the algorithm should be altered to the following:

1. Initialization: if T0 is empty

(a) As before.

(b) Else, let T ← T0,
and let S̄ ← {s | suf(s) ∈ T0 and s 6∈ T0 and P̃ (s) ≥ Pmin and |s| ≤ L}

The second variant can be improved incrementally much in the same way.

3.2.3 Prediction using a PST

Given a string s its prediction by a certain PST is done letter by letter, where the probability of
each letter is calculated by scanning the tree in search of the longest suffix that appears in the tree
and ends just before that letter. The conditional probability of this letter given this suffix is given
by the probability distribution associated with the corresponding node in the PST. For example,
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Build-Bio-PST (Nmin, γ, r, L):

1. Initialization: let T̄ consist of a single root node, with an empty label λ,
and let S̄ ← {σ | σ ∈ Σ and χ̄σ ≥ Nmin}.

2. Building the PST skeleton: While S̄ 6= φ, pick any s ∈ S̄ and do

(A) Remove s from S̄

(B) If there exists a symbol σ ∈ Σ such that

(I) P̃ (σ|s) ≥ γ

and

(II)
P̃ (σ|s)

P̃ (σ|suf(s))







≥ r
or
≤ 1/r

then add to T̄ the node corresponding to s and all the nodes on the path to s
from the deepest node in T̄ that is a suffix of s.

(C) If |s| < L then for every σ′ ∈ Σ, if

P̃ (σ′ · s) ≥ Pmin,

then add σ′ · s to S̄.

3. Smoothing the prediction probabilities: For each s labeling a node in T̄ , let

γ̄s(σ) ≡
χs∗

χs∗ + Bs

P̃ (σ|s) +
Bs

χs∗ + Bs

Ppse(σ|s)

=
χs∗

χs∗ + Bs

χsσ

χs∗
+

Bs

χs∗ + Bs

bσ

Bs

=
χsσ + bσ

χs∗ + Bs

Figure 3.3: A biologically motivated variant of the PST learning algorithm.

to predict the string s = abracadabra with the PST given in Figure 3.1 the following procedure is
carried out:

PT (abracadabra) = PT (a) PT (b|a)PT (r|ab)PT (a|abr)PT (c|abra)PT (a|abrac) ... PT (a|abracadabr)
= γ̄root(a) γ̄a(b) γ̄root(r) γ̄r(a) γ̄bra(c) γ̄root(a) ... γ̄r(a)
= 0.2 0.5 0.2 0.6 0.35 0.2 ... 0.6
= 4.032 · 10−6

The underlined subsequences represent the longest suffices that appeared in the tree (no characters
are underlined when the longest suffix is the empty string). The probability of each letter is given
by the prediction function that is associated with the corresponding node (γ̄root(), γ̄a(), etc.).

Note that a random uniform distribution over the alphabet would assign a probability of 0.211 =
2.048 · 10−8 to the string s, making it roughly 200 times more plausible under T than under the
simple uniform model.

Two-way prediction

The prediction step described in the previous paragraph proceeds from left to right, starting from
the leftmost letter. An obvious side effect of this property is that letters that mark the beginning
of significant patterns are predicted with non significant probabilities. Only after a significant sub-
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sequence has been observed (i.e., once sufficient information is accumulated) the subsequent letters
are predicted with high probability. Consequently, the (left) boundaries between significant and
non significant patterns (i.e., domain/motif boundaries) are somewhat blurred. To accommodate
for this property we have implemented a variant of the prediction step. Given a set of input se-
quences, two PST models are created, T and TR. T is built from the sequences as they are, and
TR is built from the reversed sequences. The prediction step is repeated twice. The input sequence
is predicted using T , and the reverse sequence is predicted using TR. Then, the predictions are
combined by taking the maximal prediction assigned by the two models. Thus, for s = τσρ where
σ ∈ Σ and τ, ρ ∈ Σ?, we set PT,T R(σ|s) = max {PT (σ|τ), PT R(σ|ρR)}.

3.2.4 Computational Complexity

Denote the total length of the training set by n, the depth bound on the resulting PST by L, and
the length of a generic query sequence by m. In these terms, the learning phase of the algorithm
can be bounded by O(Ln2) time and O(Ln) space, as there may be O(Ln) different subsequences
of lengths 1 through L, each of which can be searched for, in principle, in time proportional to
the training set length, while each contributes but a single node beyond its father node to the
resulting structure. The prediction phase is bounded by O(Lm) time, since every symbol predicted
requires traversing a path from the root down a tree of maximal depth L. A speed up in subsequent
predictions to can always be achieved by a conversion of the tree into a not much larger probabilistic
finite automaton, of identical predictions (see Ron et al., 1996). However, the time complexity of
this procedure is O(Ln2). In the next chapter we develop an alternative, more powerful, algorithmic
scheme to achieve the optimal bounds of learning in O(n) time and space (regardless of L, allowing
theoretically for unbounded trees) and predicting in O(m) time.

The implementation described in this chapter was coded in ANSI C, compiled using gcc, and
ran on Linux and BSDI based Pentium II and III machines. Actual run time on a Pentium II
300 MHz PC, for a protein family, varied between 30 seconds and 90 minutes, resulting in models
of size 10–300 KB. In general, a tree of an average Pfam family contains some 6,500 nodes using
the set of parameters given in Table 3.1. This is a small portion of all potential nodes that are
checked during the learning algorithm (on average, nearly 33,000 potential nodes were inspected
per model).

3.3 Results and Discussion

To test our approach, a PST was created for each of the 175 families in the Pfam database (Bateman
et al., 2002) release 1.0, and tested against the Swissprot database (Boeckmann et al., 2003) release
33. We briefly recall from Section 2.2.1 that Pfam is a database of profile HMMs. These are built
from expert curated multiple alignments of a small subset of the family, through a semi-automatic
iterative procedure that identifies other family members in the Swissprot database (Boeckmann
et al., 2003).

Each Pfam family is divided into a training set and a test set, in ratio 4 : 1, such that 4/5 of the
family members in the form of complete, unaligned sequences serve as the PST training set. Then,
for each sequence in the Swissprot 33 database, we calculate its probability as predicted by the
PST. To avoid bias due to length differences, the probability is normalized by the length, and each
sequence is reported along with its average probability per letter. Hits are sorted by decreasing
probability.

The quality of the PST model is estimated by applying the equivalence number criterion
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(Pearson, 1995). This criterion sets the family membership threshold at the point where the
number of false positives (the number of non member proteins, according to Pfam, with probability
above the threshold) equals the number of false negatives (the number of member proteins with
probability below the threshold). In the terminology of Section 2.2.1 (page 12) it is the point
where FP=FN, which sets a balance between specificity and sensitivity2. We will term this point
the iso-point. A hit that belongs to the family (true positive) and scores above this threshold,
is considered successfully detected. The quality of the model is measured by the number of true
positives detected relative to the total number of proteins in the family. The results for the 170
protein families in the Pfam database release 1.0, with more than 10 members each, are given in
Table 3.1. When averaged over all 170 families, the PST detected 90.7% of the true positives.

3.3.1 Performance Evaluation

The performance evaluation procedure that we applied assesses the quality of the PST model
in terms of its ability to predict the correct assignments of proteins to a-priori defined groups,
and our reference set here is the HMM based Pfam database. Note that this assessment does
not measure the relative merit of the PST model with respect to the HMM in general, since
the reference set depends on the HMM itself. In order to compare the performance of the PST
model to the performance of the HMM in a more objective manner, we built an HMM for each
family, out of the same training set that was used to build the PST model, and tested its ability
to detect family members using the same equivalence number criterion. These HMMs were built
automatically, without any manual calibration, using two public domain software packages which
are available through the web, namely, the SAM package version 2.2 (Hughey and Krogh, 1998),
and the HMMER package version 2.1 (Eddy, 1998a). An HMM is built there from a set of input
sequences using the Expectation Maximization (EM) algorithm (Dempster et al., 1977). An initial
model is constructed based on background distributions. The model is then improved iteratively
by aligning the sequences to the current model and then recalculating the transition and emission
probabilities based on these alignments. The process is repeated until it converges.

The compared methods

For each family, three HMMs were built. The first one was built directly from the set of unaligned
sequences using the program ‘buildmodel’ of the SAM package. The model was then used to search
the Swissprot database using the ‘hmmscore’ program. The other two models were built after the
sequences were aligned first using the ClustalW program, version 1.75 (Higgins et al., 1996). These
models were created using the program ‘hmmbuild’ which is part of the HMMER package3. In this
package the mode of the search (local or global) is part of the model itself. Therefore, one of the
models was created in a local/global mode (allows local match with respect to the sequence, and
a global match with respect to the model, i.e., only a complete match with the model is reported),
and the second was created in a local/local mode. Both allow multiple matches with the same
sequence (corresponding to multiple copies of the same domain). These models were then used
to search the Swissprot database using the ‘hmmsearch’ program of the HMMER package. The
results of our assessment are summarized in Table 3.1.

For reference, we have also evaluated the performance of the HMMs which are part of the
Pfam database itself (made available through the Pfam website). These HMMs are based on

2To see this note that lowering the threshold causes some sequence labels to turn from negative to positive. This
in turn may increase sensitivity, and decrease specificity. And vice versa when the threshold is increased.

3In version 2.1, this program can build an HMM only from a multiple alignment of the input sequences.
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No. of sequences missed by
Family Size Coverage Sequences % True Pos. HMM HMM HMM HMM BLAST BLAST

PST missed PST detected Pfam local global SAM best average

7tm 1 515 0.707 36 93.0% 13 1 7 1 12 64
7tm 2 36 0.735 2 94.4% 0 0 0 0 0 0
7tm 3 12 0.805 2 83.3% 0 0 0 0 0 0
AAA 66 0.378 8 87.9% 0 1 1 1 1 2
ABC tran 269 0.518 44 83.6% 1 3 2 6 5 12
actin 142 0.965 4 97.2% 4 2 2 1 0 3
adh short 180 0.661 20 88.9% 0 8 2 3 8 55
adh zinc 129 0.970 6 95.3% 1 2 1 3 2 7
aldedh 69 0.907 9 87.0% 0 0 0 0 0 1
alpha-amylase 114 0.750 14 87.7% 0 2 1 3 2 18
aminotran 63 0.942 7 88.9% 0 1 0 1 16 28
ank 83 0.151 10 88.0% 3 9 26 3 9 39
arf 43 0.951 4 90.7% 0 0 0 0 0 0
asp 72 0.771 12 83.3% 7 1 5 1 0 3
ATP-synt A 79 0.649 6 92.4% 3 1 1 0 1 11
ATP-synt ab 180 0.694 6 96.7% 6 1 3 0 1 4
ATP-synt C 62 0.855 5 91.9% 12 0 1 1 0 6
beta-lactamase 51 0.863 7 86.3% 0 0 0 0 9 17
bZIP 95 0.217 10 89.5% 1 4 6 2 22 46
C2 78 0.175 6 92.3% 3 7 16 7 23 47
cadherin 31 0.503 4 87.1% 0 1 1 1 2 5
cellulase 40 0.584 6 85.0% 0 1 1 2 8 17
cNMP binding 42 0.466 3 92.9% 2 1 7 2 2 15
COesterase 60 0.900 5 91.7% 7 1 4 1 0 2
connexin 40 0.687 1 97.5% 0 0 0 0 0 0
copper-bind 61 0.835 3 95.1% 0 0 0 0 14 26
COX1 80 0.215 13 83.8% 1 4 3 5 2 6
COX2 109 0.897 2 98.2% 11 0 2 0 0 3
cpn10 57 0.953 4 93.0% 1 0 1 0 0 1
cpn60 84 0.948 5 94.0% 0 0 0 0 0 0
crystall 53 0.851 1 98.1% 0 0 0 0 0 2
cyclin 80 0.635 9 88.8% 2 2 2 2 4 12
Cys-protease 91 0.682 11 87.9% 11 2 9 0 0 4
cystatin 53 0.742 4 92.5% 1 1 20 3 13 27
Cys knot 61 0.502 4 93.4% 0 1 - 6 12 25
cytochrome b C 130 0.313 27 79.2% 2 20 19 18 1 17
cytochrome b N 170 0.658 3 98.2% 22 2 3 0 0 1
cytochrome c 175 0.891 11 93.7% 2 4 6 5 30 66
DAG PE-bind 68 0.112 7 89.7% 1 7 5 13 9 33
DNA methylase 48 0.846 8 83.3% 2 0 2 0 0 2
DNA pol 46 0.650 9 80.4% 1 - - 0 0 3
dsrm 14 0.226 2 85.7% 1 0 6 1 7 10
E1-E2 ATPase 102 0.636 7 93.1% 3 0 2 0 0 2
efhand 320 0.401 25 92.2% 27 28 52 25 42 105

Table 3.1: PST performance for all Pfam families (part 1). Families are ordered alphabetically. The names
of the families are abbreviated as in the Pfam database. The number of proteins in the family is given in the second
column. Coverage (third column) is the total portion of the sequences which is included in the multiple alignment used
to define the domain or the family in the Pfam database. Each family was divided into a training set and a test set
and the PST was built from the training set. To test the quality of this PST, we calculate the probability that the PST
induces on each sequence in the Swissprot 33 database, and each family sequence (from the training set and the test
set) whose probability is above the iso-point is considered successfully detected (see text for more details). The number of
sequences missed (i.e., the equivalence number) and the percentage of true positives detected are given in the fourth and
fifth columns respectively. The other columns give the number of sequences missed by: the Pfam HMM; an HMM trained
on a multiple alignment in a local search mode (see text); an HMM trained on a multiple alignment in a global search
mode; an HMM trained on the unaligned sequences; best Gapped-BLAST search, and average Gapped-BLAST search.
The sign “-” denotes that results were not available (the program crashed). The set of parameters used to train the PST is
P min = 0.0001 α = 0 γ min = 0.001 r = 1.05 and L = 20. Additional improvement in the performance is expected
if the parameters are tuned for each family (see text). To train a PST on a typical family with this set of parameters takes
about half an hour on average, on a pentium II 300 Mhz (the range is between 30 seconds and 90 minutes). Additional 5
minutes are needed to predict all sequences in the Swissprot database. For comparison, training an HMM from unaligned
sequences takes about two hours on average, and searching the Swissprot database with a typical HMM takes several
hours.
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No. of sequences missed by
Family Size Coverage Sequences % True Pos. HMM HMM HMM HMM BLAST BLAST

PST missed PST detected Pfam local global SAM best average

EGF 169 0.133 18 89.3% 28 120 118 53 46 98
enolase 40 0.983 0 100.0% 3 0 2 0 0 1
fer2 88 0.785 5 94.3% 2 1 2 1 0 5
fer4 152 0.559 18 88.2% 7 3 6 2 16 46
fer4 NifH 49 0.928 2 95.9% 5 0 3 0 0 1
FGF 39 0.691 1 97.4% 0 0 0 0 0 0
fibrinogen C 18 0.469 4 77.8% 0 1 - 0 0 1
filament 139 0.607 5 96.4% 14 0 7 0 3 10
fn1 15 0.107 2 86.7% 1 1 1 4 6 9
fn2 20 0.141 2 90.0% 0 1 2 2 0 10
fn3 161 0.242 23 85.7% 1 85 95 43 61 116
GATase 69 0.605 8 88.4% 0 2 1 1 2 17
gln-synt 78 0.807 5 93.6% 3 0 1 0 1 6
globin 681 0.974 15 97.8% 5 3 3 2 48 136
gluts 144 0.849 14 90.3% 0 3 1 2 23 59
gpdh 117 0.977 3 97.4% 3 0 3 0 0 4
GTP EFTU 184 0.802 15 91.8% 0 3 1 2 1 5
heme 1 55 0.250 4 92.7% 0 6 17 0 0 4
hemopexin 31 0.458 3 90.3% 0 1 0 0 0 2
hexapep 45 0.184 8 82.2% 1 2 10 1 5 16
histone 178 0.887 6 96.6% 0 0 0 1 52 104
HLH 133 0.194 7 94.7% 1 8 14 2 27 70
homeobox 383 0.333 27 93.0% 13 2 16 3 9 57
hormone 111 0.961 4 96.4% 0 2 0 2 2 4
hormone2 73 0.613 2 97.3% 0 0 0 0 4 18
hormone3 53 0.760 5 90.6% 0 0 0 0 2 5
hormone rec 127 0.313 7 94.5% 0 1 1 2 3 5
HSP20 129 0.625 7 94.6% 1 0 1 0 10 34
HSP70 163 0.906 7 95.7% 24 0 9 0 3 6
HTH 1 101 0.476 16 84.2% 0 3 1 2 11 34
HTH 2 63 0.348 9 85.7% 0 1 7 1 3 18
ig 884 0.414 51 94.2% 12 - - 35 248 553
il8 67 0.662 4 94.0% 0 0 0 0 2 18
ins 132 0.715 3 97.7% 0 0 0 0 7 20
interferon 47 0.987 2 95.7% 0 0 0 0 0 0
kazal 110 0.735 6 94.5% 1 1 1 2 3 13
ketoacyl-synt 38 0.741 7 81.6% 0 0 0 0 0 2
KH-domain 36 0.195 4 88.9% 4 6 23 13 21 28
kringle 38 0.298 2 94.7% 0 1 2 1 0 8
Kunitz BPTI 55 0.665 5 90.9% 0 2 38 0 0 4
laminin EGF 16 0.215 3 81.2% 1 0 - - 2 5
laminin G 19 0.248 2 89.5% 0 1 - 1 3 11
ldh 90 0.910 6 93.3% 16 1 14 4 11 27
ldl recept a 31 0.150 5 83.9% 0 2 6 2 5 16
ldl recept b 14 0.209 1 92.9% 0 1 1 0 1 1
lectin c 106 0.478 14 86.8% 1 1 5 1 3 44
lectin legA 43 0.356 3 93.0% 0 1 5 0 0 0
lectin legB 38 0.749 7 81.6% 6 5 5 10 2 5
lig chan 29 0.836 1 96.6% 2 0 0 0 0 0
lipase 23 0.779 3 87.0% 6 0 0 0 0 0
lipocalin 115 0.858 7 93.9% 4 1 4 0 50 74
lys 72 0.907 1 98.6% 5 0 3 0 1 3
MCPsignal 24 0.107 4 83.3% 0 0 0 0 0 0
metalthio 56 0.963 0 100.0% 5 0 0 0 2 4
MHC I 151 0.494 3 98.0% 1 0 0 0 0 0
mito carr 61 0.874 7 88.5% 1 0 0 0 0 1
myosin head 44 0.439 10 77.3% 1 4 - 0 0 6
NADHdh 57 0.933 4 93.0% 5 0 2 0 0 0
neur 55 0.799 2 96.4% 3 0 2 0 0 2
neur chan 138 0.882 4 97.1% 5 1 2 2 1 4
oxidored fad 101 0.244 12 88.1% 0 3 19 1 15 49
oxidored molyb 35 0.487 1 97.1% 2 0 0 0 0 1
oxidored nitro 75 0.800 8 89.3% 20 3 18 3 5 33

Table 3.1: PST performance for all Pfam families (part 2)
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No. of sequences missed by
Family Size Coverage Sequences % True Pos. HMM HMM HMM HMM BLAST BLAST

PST missed PST detected Pfam local global SAM best average

p450 204 0.917 17 91.7% 0 2 1 2 2 7
peroxidase 55 0.745 7 87.3% 6 0 3 0 12 32
PGK 51 0.984 3 94.1% 1 0 1 0 0 0
PH 75 0.150 5 93.3% 1 4 17 15 43 67
phoslip 122 0.938 3 97.5% 8 0 5 0 0 3
photoRC 73 0.888 1 98.6% 2 0 1 0 0 1
pilin 56 0.700 6 89.3% 10 2 3 2 0 3
pkinase 725 0.523 108 85.1% 23 - - 1 6 52
pou 47 0.234 2 95.7% 1 0 0 0 0 0
Pribosyltran 45 0.831 5 88.9% 1 0 2 3 18 23
pro isomerase 50 0.780 3 94.0% 1 0 0 0 0 1
pyr redox 43 0.938 7 83.7% 0 0 0 0 0 0
ras 213 0.930 8 96.2% 1 2 1 2 1 3
recA 72 0.928 3 95.8% 7 0 4 0 0 0
response reg 128 0.424 19 85.2% 1 25 20 2 5 27
rhv 40 0.431 2 95.0% 0 2 - 1 0 5
RIP 37 0.716 2 94.6% 8 0 7 0 4 15
rnaseA 71 0.926 1 98.6% 1 0 1 0 0 1
rnaseH 87 0.186 12 86.2% 0 7 7 7 8 13
rrm 141 0.353 22 84.4% 2 - - 11 21 79
RuBisCO large 311 0.995 4 98.7% 20 0 19 0 0 0
RuBisCO small 99 0.721 3 97.0% 0 0 0 0 0 0
rvp 82 0.156 12 85.4% 2 14 - 13 12 26
rvt 147 0.237 17 88.4% 0 10 12 10 24 56
S12 60 0.958 2 96.7% 3 0 3 0 0 1
S4 54 0.952 4 92.6% 0 2 1 2 1 3
serpin 98 0.908 9 90.8% 8 1 2 1 0 3
SH2 128 0.157 5 96.1% 3 23 18 29 16 50
SH3 137 0.126 16 88.3% 0 43 36 57 18 72
sigma54 56 0.663 9 83.9% 6 3 4 0 2 6
sigma70 61 0.679 5 91.8% 0 0 0 0 0 2
sodcu 66 0.912 5 92.4% 7 1 4 1 3 6
sodfe 69 0.931 5 92.8% 7 0 6 0 2 5
STphosphatase 86 0.810 5 94.2% 2 0 0 0 0 0
subtilase 82 0.563 9 89.0% 0 1 1 1 0 13
sugar tr 107 0.880 15 86.0% 2 6 5 6 14 33
sushi 75 0.454 8 89.3% 0 1 21 1 3 31
TGF-beta 79 0.296 6 92.4% 3 1 4 1 1 4
thiolase 25 0.965 3 88.0% 0 0 0 0 0 0
thiored 76 0.723 11 85.5% 4 1 3 0 2 6
thyroglobulin 1 32 0.161 3 90.6% 0 2 27 3 0 7
TIM 40 0.973 3 92.5% 1 0 0 0 0 0
TNFR c6 29 0.353 4 86.2% 0 0 3 2 2 7
toxin 172 0.936 4 97.7% 2 1 2 1 2 9
trefoil 20 0.361 3 85.0% 0 3 11 0 1 8
tRNA-synt 1 35 0.743 7 80.0% 0 0 0 0 1 2
tRNA-synt 2 29 0.702 5 82.8% 0 0 0 0 0 2
trypsin 246 0.730 22 91.1% 0 1 0 1 0 4
tsp 1 51 0.152 6 88.2% 0 3 4 1 2 30
tubulin 196 0.943 1 99.5% 13 0 5 0 1 2
UPAR LY6 14 0.908 2 85.7% 0 0 0 0 2 5
vwa 29 0.277 6 79.3% 0 2 5 4 10 20
vwc 23 0.090 6 73.9% 0 8 - 2 8 15
wap 13 0.566 2 84.6% 0 0 0 0 1 3
wnt 102 0.936 6 94.1% 66 0 0 0 0 0
Y phosphatase 92 0.577 8 91.3% 34 0 3 1 4 19
zf-C2H2 297 0.362 23 92.3% 4 13 22 11 15 56
zf-C3HC4 69 0.093 10 85.5% 2 3 28 2 18 48
zf-C4 139 0.152 6 95.7% 1 1 3 1 0 1
zf-CCHC 105 0.072 12 88.6% 1 11 7 12 7 40
zn-protease 148 0.029 21 85.8% 4 110 111 13 92 125
Zn clus 54 0.061 10 81.5% 0 2 8 1 3 24
zona pellucida 26 0.484 3 88.5% 0 0 0 0 0 7

Table 3.1: PST performance for all Pfam families (part 3)
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manually calibrated alignments and are in principle verified to recognize all family sequences (missed
sequences may be manually inserted into the seed subset). As a third reference test we ran Gapped-
BLAST (Altschul et al., 1997) with each of the member sequences in these families as a query. The
performance of this pairwise search algorithm is given both in terms of the best query, and the
average query.

Evaluation of results

Overall, the manually calibrated Pfam HMMs detected 96.1% of the true positives (averaged over
170 families with more than 10 members). This is only slightly better than the average performance
of HMMs that were built from a multiple alignment of the input sequences, in a local/local mode
of comparison (96.0% over 166 families). When the HMMs were built from the same multiple
alignments, but in a local/global search mode, the performance dropped to 91.5% (averaged over
158 families). The HMMs that were built directly from the unaligned sequences using the SAM
package performed surprisingly well, with 96.7% success over 169 families. This is slightly more
discriminative in comparison with the manually calibrated Pfam HMMs. (This may be explained
by the fact that Pfam HMMs are based on seed alignments of a small sample set of the family,
while the SAM HMMs are trained on 4/5 of the family members.) A marginal improvement (0.1%)
was observed with the SAM package when the rest of the sequences were used as a test set by the
program ‘buildmodel’ (not shown). Gapped-BLAST searches performed quite well (92.5% over 170
families), when the “best” query was chosen for each family. However, a typical BLAST search
(average performance for all member proteins) performed much worse (78.5% over 170 families).

According to our assessment, already in its very simplistic form and with a preliminary set of
parameters, the PST model has detected 90.7% of the true positives in the reference set. This is
much better than a typical BLAST search, and almost as good as an HMM that was trained from a
multiple alignment of the input sequences in a global search mode. This result is surprising in view
of the fact that the model was built in a fully automated manner, without any human intervention
or biological consideration, and without utilizing any prior knowledge, such as multiple alignments
or scoring matrices.

When the build-bio-pst procedure was applied to all Pfam families, with substitution prob-
abilities corresponding to the Blosum62 scoring matrix (Henikoff and Henikoff, 1992), the overall
performance was improved and 91.7% of the true positives were detected (not shown). For many
families, this procedure resulted in much smaller trees that performed same or better than the
trees of the basic procedure (for example, the detection rate for the peroxidase family improved
from 87.3% with 10,226 nodes using the build-pst procedure, to 96.4% with 5,579 nodes, using
the build-bio-pst). This is not true for all families, probably since our pruning criteria still need
to be refined. In some families we observe minor fluctuations and one or two member proteins were
missed by the new model. For small families each protein missed equals to few percentages less
in performance, and consequently, the overall performance is affected. However, overall the new
model performed better and detected 178 more sequences than the original model.

Critique of the evaluation methodology

Comparing the PST model with HMM based on Pfam families is not a totally objective test,
since the groups are defined based on an HMM. An optimal evaluation test would be based on an
independent “true” classification of proteins into families. However, no such classification clearly
exists. Another reservation is that false positives may be over-counted. It often happens that
supposedly false positives with respect to the reference database are actually true positives (Yona
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Figure 3.4: Improving prediction by increasing
the number of nodes. A PST was built for the glyc-
eraldehyde 3-phosphate dehydrogenases family, for dif-
ferent values of Pmin, and the quality of the PST was
estimated by applying the equivalence number criterion
(see text). The graph plots the error rate (the number
of family members which were not identified, as their
score was below the threshold set by the iso-point) vs.
the number of nodes in the PST (which increases as
Pmin decreases). Note that the error rate decreases as
the number of nodes increases. At some value of Pmin

the quality does not improve much, while the tree keeps
growing. If the results are satisfactory, then it is sug-
gested to stop the incremental process at this point.

et al., 2000; Letunic et al., 2002). For example, among the first 250 hits reported by the PST
of the pkinase family four are supposedly false positives. However, these four are short proteins
(21–42 amino acids long) documented as various types of kinases and their sequence similarity
to other kinases is very significant. This problem is inherent in any evaluation procedure which
assesses a new classification by means of another, man-made, classification. However, as no clear
baseline distribution exists and in the absence of other reliable evaluation procedures, this so called
“external validation test” is commonly used (Yona et al., 2000; Gracy and Argos, 1998b; Pearson,
1995). Our specific choice of the Pfam database was motivated by the high quality of this database.

Factors affecting PST performance

It should be noted that Table 3.1 only demonstrates the potential of the PST model, but must
not be taken as an upper bound on its performance. To obtain these results we simply ran the
PST learning procedure with a fixed set of parameters for all families which we found to result in
good performance in a reasonable run time. However, the performance of a PST can be improved
by simply tuning the values of the parameters, either globally or per each family. One can either
decide to examine more nodes (lower Pmin), or lower the criteria of acceptance of a candidate (lower
α or lower r) or even deepen the tree (increase L). This can be done in an efficient, incremental
manner (see Section 3.2.2).

The effect of parameter tuning on the performance is demonstrated in Figure 3.4 for the glycer-
aldehyde 3-phosphate dehydrogenases family. In general, adding more nodes would tend to increase
sensitivity without decreasing specificity, simply because more (longer) subsequences that are ob-
served in the training set are “recorded” in the PST. This means that only leaves are further
expanded, while the probability distributions of internal nodes are not affected. This way, the pre-
dictions over the test set are, hopefully, refined. However, since long subsequences observed in the
training set are not expected to occur in unrelated sequences, the prediction of unrelated sequences
is based on short subsequences corresponding to internal nodes close to the root, and therefore it
is not expected to change.

The only limitation one should keep in mind is that the size of the tree (the number of nodes), as
well as the run time, may increase significantly as the parameters are refined, while the improvement
in the quality may be insignificant. However, if computation time is of no concern then the PST can
run as long as the sensitivity improves (i.e., more family members are detected above the iso-point).
In two cases no further improvement is expected: when all sequences of the family are detected,
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and when all strings in the training set are exhaustively recorded, and predicted with very high
probabilities.

An additional improvement is expected if a larger sample set is used to train the PST. Currently,
the PST is built from the training set alone. Obviously, training the PST on all strings of a family
should improve its prediction as well. Such, for example, is the case for the Pfam HMMs, where
all detected members are aligned against the seed HMM to obtain a much larger model.

Screening short sequences and score normalization

The performance of the PST model is even better if very short protein sequences are ignored. Since
the “score” assigned to each string by the PST model is normalized by the string’s length, very short
sequences (i.e., shorter than 20 amino acids) may be assigned relatively high probabilities. These
sequences are too short to “activate” the long memory prediction (i.e., the variable memory does not
take effect), and hence the prediction is based on nodes closer to the root of the tree. Consequently,
these strings may get high probabilities simply by chance and are harder to distinguish from random
strings. By discarding all sequences in the Swissprot database which are shorter than 20 amino
acids (754 sequences), better prediction results are obtained. Specifically, the performance of the
PST model improves by 2.3% (272 sequences) to detect 93% of the true positives in the reference
set (not shown). As only 5 out of 15,604 sequences in the Pfam database release 1.0 are shorter
than 20 amino acids, the HMMs are hardly affected by discarding those sequences.

While discarding these sequences can be justified because very short peptides are usually bio-
logically meaningless, a different scoring scheme can neutralize to some extent the effect of these
sequences. For example, a log odds score normalizes the raw probability of a string s by the chance
probability to observe that string (Altschul, 1991). Formally speaking, let P T (s) be the probability
assigned by the PST and let P0(s) be the chance probability defined as P0(s) =

∏

i=1..|s| P0(si),
where P0(si) are defined by the background probabilities in the Swissprot database. The log odds
score is defined as

log
P T (s)

P0(s)

This ratio compares the probability of an event under two alternative hypotheses. Thus, the
score for each amino acid along the sequence is defined as the logarithm of the amino acid’s PST
probability divided by its probability of occurrence under independent selection.

The evaluation procedure was repeated with the normalized log odds scores, this time without
screening the short sequences. Surprisingly, with these new scores the success rate improved only
by 0.2% to 90.9%, suggesting that more sophisticated normalization schemes should be applied.

Performance for protein families vs. domain families and local predictions

As described in Section 3.2.3, the probability the PST model assigns to a protein sequence accounts
for all symbols in the sequence. Specifically, it is the product of symbol probabilities along the
whole sequence. Therefore, it may happen that family members which are similar to other
family members along a relatively small fraction of their sequence will be assigned a low overall
probability. Consequently, families in which the common pattern is only a small part of the sequence
(i.e., domain families) are expected to perform worse than families that are conserved along all or
most of the sequence. We tested the effect of the size of the domain on the performance. We
define the coverage (ranging between 0 and 1) as the total portion of the family sequences which
is included in the multiple alignment used to define the domain or the family in the Pfam database.
We expect better detection with the PST model for families with high coverage. Indeed, the

50



Chapter 3

% True Positives
Family Ldomain Nlocal Plocal Ngap Global Local

prediction prediction

myosin head 20 0.5 0.1 3 77.3% 86.4%
vwa 10 0.7 0.15 3 79.3% 86.2%
cytochrome b C 30 0.7 0.2 3 79.2% 83.1%
vwc 10 0.9 0.15 3 73.9% 82.6%

Table 3.2: Improvement of PST performance in local prediction mode. This variant was tested on
five families on which the PST model performed worst in global-prediction mode (see text). Four out of the
five families were better detected with the model that was tuned to local prediction mode.

performance of the PST model improves once only families with high coverage are considered (see
Table 3.1). It detects 92% of the true positives in 108 families with more than 0.5 coverage (while
the Pfam HMMs detect 94.9%). Surprisingly, the PST detects more true positives (94.2%) than
the HMM (93.9%) for all 38 families with at least 0.9 coverage. This last feature of the PST model
can lead to a better performance for proteins with several repeats of the same domain. Two such
cases are the EF-hand and the EGF families, that were best detected with the PST model. The
proteins in both these families are known for having several copies of these domains.

In view of the discussion above, the PST model is a prediction tool with a “global” flavor.
However, in many cases the similarity of two sequences is limited to a specific motif or domain,
the detection of which may yield valuable structural and functional insights, while outside of this
motif/domain the sequences may be essentially unrelated. Moreover, many proteins contain several
different domains. In such cases “global” prediction may not be the appropriate scheme. Local
similarities may be masked by long unrelated regions. Consequently, the probability assigned to
such sequences can be nearly as low as that assigned to totally unrelated sequences.

To accommodate for the multi-domain trait of proteins we have tested a variant of our prediction
step. We calculate the probability only for those regions which are at least Ldomain amino acids
long, and in which at least Nlocal percent of the amino acids have probability above Plocal. Each
such subsequence is considered a domain or a motif. A continuous subsequence of at least Ngap

amino acids with probability below Plocal each, marks the end of a domain. We tested this variant
on five families on which we performed worst (vwc, myosin head, fibrinogen C, cytochrome b C and
vwa, with performance ranging between 73.9% and 79.3% using the original prediction procedure).
Clearly, these parameters need to be optimized for each family separately. For each family we
evaluated the performance with several sets of parameters, and picked the best one. For four
families the performance improved using the new prediction procedure (see Table 3.2).

3.3.2 Biological Implications

To demonstrate the general performance of the PST model, we examine the scores assigned by a
PST model to the entire Swissprot database, which contains the training sequences from which the
PST was trained, the test set of family members the PST should detect, and many more sequences
that do not belong to the family. Figure 3.5 holds the scores given by two PSTs, one trained on the
Neurotransmitter-gated ion-channels and another on the MHC class I family. The cumulative log
odds (as predicted by the PST) of the training set sequences, the test set sequences and all the other
sequences in the database are plotted vs. the sequences lengths. Note that the unrelated sequences
show a clear linear relation in log scale. The training set and the test set samples are located
far below this line, hence are well distinguished from the unrelated (effectively random) sequences.
Taking a more permissive threshold for Pmin, resulted in an improved model with better predictions
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Figure 3.5: Left: Performance of a PST of the Neurotransmitter-gated ion-channels (Pmin =
0.0001). Right: Performance of a PST of the MHC class I family (Pmin = 0.000005). The graphs
plot the log likelihood of each database sequence (including the training set and the test set) as a function
of the sequence length. Likelihood is the product of symbol probabilities along the whole sequence. The
PST of the MHC class I family, being trained with a lower value of Pmin, is an example of an extreme fit of
the PST to the training set. Note that the prediction of the test set improves as well, while the unrelated
sequences are left unaffected. When the PST of the MHC class I family was trained with the same set of
parameters as the PST on the left, its performance graph resembled the graph on the left.

(Figure 3.5, right), i.e., better separation between family members and unrelated sequences.

Family conservation

One possible implication of the PST model is that it can be used to quantify the degree of sequence
conservation within protein families. Let us define − log pi, minus the log likelihood of a given
predicted symbol, as its associated level of surprise. The bigger the probability of observing that
symbol in that context, the smaller the related surprise, and vice versa. The average surprise per
symbol for a sequence predicted by a PST model quantifies the relative departure of that sequence
from the predictions of the model. This quantity can also be interpreted in terms of coding length,
in bits, of the sequence by the model, but we shall differ the introduction of this interpretation
to Chapter 5. Several related quantities are of interest here: the average surprise of unrelated
sequences, the average surprise of related sequences vs. model size, and the average depth of the
PST nodes used for prediction, in both cases.

The slope of the line in Figure 3.5 is a measure of the average surprise associated with unrelated
(essentially random) sequences using a specific PST. For example, 6.64 bits per letter are recorded
when using the PST of the Neurotransmitter-gated ion-channels family, while 8.3 bits are recorded
when using the PST of the MHC class I family. For comparison, 4.18 bits are the average surprise
associated with random sequences, when using the background distribution derived from the Swis-
sprot 33 database. The slope is correlated with the uniqueness of the source distribution, and
particularly, it is higher for families for which the amino acid distribution differs markedly from
the overall amino acid distribution in the database.

On the contrary, the training set and test set entail far lower surprise levels per letter. This
reflects the modeling performance of the PST model and can also serve as a measure of diver-
gence within a protein family. Small average surprise reflects strong conservation within the
protein family, while larger surprise reflects high divergence. The average surprise for MHC class
I sequences, as predicted by the PST of that family, is but 0.68 bits per letter while the average
surprise of the Neurotransmitter-gated ion-channels is 2.21 bits per letter (using the PST of that

52



Chapter 3

family with the same set of parameters), suggesting that the former is more conserved. The di-
vergence may be related to structural diversity, suggesting that the transmembrane proteins of the
Neurotransmitter-gated ion-channels may adopt a larger variety of shapes than the MHC class I
family.

Prediction of significant patterns

The obvious use of the PST model is its application in prediction of family membership. A good
model will discern family members from unrelated sequences. Our evaluation procedure shows that
the PST model is indeed successful in this respect. The actual prediction process, letter by letter
(as shown for the Snake toxins family in Figure 3.6) can further help in assessing the relevance of
high scoring hits (and possibly screen out false positives).

The PST can also be used to predict which segments of a given query sequence are suspected
to be functionally or structurally important and suggest domain boundaries. These segments
correspond to regions of high probability. This is demonstrated in Figure 3.7 for a protein from
the Zinc finger, C4 type family. The Pfam zf-C4 domain starts at position 79 and ends at position
154 (according to Swissprot annotation, this region contains two fingers in positions 81-101 and in
positions 117-141). The PST assigns high probabilities to residues in this region, though it starts
a bit closer to the N-terminus (at position 59). Note that another domain is predicted with high
probability (between positions 190 and 413). This region corresponds to the ligand-binding domain
of the nuclear hormone receptors (which according to Swissprot annotation starts at position 193
and ends at position 412). Out of the 139 proteins in the zf-C4 family, 127 also belong to the
hormone receptors family. Thus, we see that both domains were recorded in the PST model during
the learning phase. This explains why the PST predicted both domains with high probability. Note
that along the two regions not all letters are essentially of high probability, which may point to a
substitution or a gap in the query sequence, and different evolutionary pressures.

Recall that the PST does not require the input sequences to be aligned nor does it make
use of such information during learning. The input sequences were not fragmented according to
domain boundaries before the learning phase, and therefore this information was solely self attained.
This will serve us as a motivating example when in later chapters we attempt protein sequence
segmentation. The PST model can thus also help to guide a multiple alignment of a set of related
sequences, by suggesting an initial seed, which is based on the regions of high probability.

In Figure 3.8 the PST model of the EGF family was used to predict EGF motifs within the
protein sw:fbp3 strpu (570 residues long). This protein has 8 EGF repeats (the starting positions
are marked by arrows). Note that all these domains, except for the first, correspond to regions
of high probability as predicted by the PST model. Indeed, the Prosite database (Sigrist et al.,
2002) regular expression (Section 2.2.1) defining the EGF motif C-x-C-x(5)-G-x(2)-C allows a
lot of variability between the conserved cysteines and glycine. The probabilities in Figure 3.8 are
derived from the combined two-way prediction (see Section 3.2.3), for better prediction of domain
boundaries. The prediction was smoothed using a sliding window of length 20 by averaging over
the probabilities of symbols within each window.

Protein prediction mechanism

We turn to examine how the PST predictions map to the protein sequences themselves. We illustrate
our arguments using the paired box domain family. The complete sequences of the 139 proteins in
which the paired box domain is found were randomly split, in ratio 4:1 as before, into train and test
sets. A model was learned from the training set using the parameter set of Table 3.1. Figure 3.9(a)
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Figure 3.6: Prediction using PSTs. The PST of the Snake toxins family was used to calculate the
probability, letter by letter, of a protein sequence (sw:P01445) from the Snake toxins family test set (left),
and of a protein sequence (sw:P09837) from the WAP-type (Whey Acidic Protein) family. The average
probability is 0.75 and 0.001 respectively.
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Figure 3.7: Identifying significant patterns using PSTs. The PST of the Zinc finger, C4 type family
was used to predict significant patterns in protein sw:P10826. The protein belongs to the test set and its
average probability per symbol is 0.5. More importantly, two different regions of conservation, matching the
two functional domains of the protein are also detected (see text).
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Figure 3.8: EGF domains Prediction. We combine the prediction of two EGF models for the sequence
sw:fbp3 strpu into a single average score. One PST was trained to predict from the 5’ terminus to the 3’
terminus of the sequences, as before, while the other predicts from the 3’ terminus to the 5’ terminus. The
actual starting positions of the EGF domains (according to Swissprot) are marked by arrows.
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shows the prediction, symbol by symbol of a test set family member. The paired box domain is
located between residues 4 – 128 in this protein, and is seen to correlate very nicely with the area
of high prediction. In contrast, we draw in Figure 3.9(b) the predictions of simple Markov models,
of orders 1,2 when trained from the same data. We see that the first model does not capture the
domain at all, while the other already captures parts of the signal, but not its entirety. A full third
order model requires much more data than the available 111 sequences used for training.

Returning to the PST model predictions, Figure 3.9(c) plots the depth of the node (or length
of the suffix) from which prediction was made, per each symbol. We can see that prediction depth
also correlates well with the existence of the paired box domain in all training sequences. However,
the signal itself is much less contiguous than for the actual predictions. To see the source of
these deep contexts we schematically draw in Figure 3.9(d) the multiple alignment of the training
set sequences, against the test set sequence. Whenever an amino acid in an aligned training set
sequence is identical to the corresponding amino acid in the test set sequence, it is shaded black.
Otherwise, it is shaded gray. The figure zooms in on the paired box domain and flanking regions,
and clearly shows the sources of the long contexts, as well as the relatively unique region preceding
residue 100. Another aspect of the comparison to the MSA is shown in Figure 3.9(e), where we plot
the conservation score assigned by ClustalW (Higgins et al., 1996) to each column corresponding
to a residue of our query sequence.

Finally, we note that the paired box domain has been relatively well conserved during evolution.
Less conserved families pose a greater challenge for the PST algorithm. For example, we plot in
Figure 3.9(f) the Pfam database curated MSA of the Aldose 1-epimerase family, against an arbitrary
member of the family. Comparison to Figure 3.9(d) shows that while the general structure of the
alignment is similar, the exact short patterns are much rarer and shorter, reflecting on the resulting
PST model quality.

Left-right causality in protein sequences?

It is interesting to see if there is a sense of directionality in protein sequences. I.e., whether
protein sequences are “generated” by a source which has a clear directionality. Obviously proteins
are assembled from the N-terminus to the C-terminus. They are built at the ribosome, being
translated from an RNA molecule, one amino acid at a time, as the translation process propagates
from the N terminus to the C terminus. While it has been speculated by some that this process
affects the folding process of the amino acids chain (Fedorov and Baldwin, 1995; Kolb et al., 1995),
there has been no rigorous proof whether or not left-right causality is encoded in the corresponding
gene. That is, a causality that dictates the next amino acid given that we have observed a certain
sequence of amino acids. Such causality may follow some physical-chemical rules and constraints
that govern the processes of creating secondary structure elements in proteins, and in general, the
whole folding process.

If left-right causality exists in protein sequences then one might expect differences in prediction
when we propagate from left to right along the sequence compared with when we propagate along
the other direction. To test this hypothesis, we trained a PST on the reversed sequences of each
Pfam family. These PSTs were used to predict the sequences in the Swissprot database (after
being reversed) in the same way described in Section 3.2.3 and the performance was evaluated
using the equivalence number criterion. Surprisingly, perhaps, our evaluation shows that there is
no difference in performance between left-right prediction and right-left prediction. Both perform
almost exactly the same with some minor fluctuations. Such observation is consistent with current
knowledge and perceptions of protein evolution, according to which, the genetic pressure is mainly
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Figure 3.9: PST prediction analysis. (a) Prediction of a family member test set sequence (Q9PSA2)
against the PST generated from the paired box domain family training set. The family domain is located
between residues 4 – 128 in the query sequence. (b) A comparison to first and second order Markov model
predictions given the same training set and query sequence. Third order Markov requires much more data
than the available sequences. (c) Prediction depth, or suffix length, is drawn per position, as used in the
PST prediction above. (d) A schematic depiction of the MSA of the 111 training sequences against the query
sequence (bottom line). Training set residues are shaded black if they are identical to the corresponding
residue in the query sequence, or gray otherwise. The x-axis is zoomed at a region containing the family
domain. This plot shows the origin of the long contexts observed during prediction, in the figure on its
left. (e) The ClustalW conservation score of each MSA column to which a query sequence residue had been
matched. (f) A similar plot to the one above it, for the Aldose 1-epimerase family. One can easily see that
this family has been much less conserved during evolution. Such families, offering less, shorter contexts, are
harder for the PST model to capture accurately.
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at the protein level, and the constraints on the sequence are determined by spatial considerations,
sometimes between residues which are far apart in the sequence. These perceptions are further
supported by evidences of correlated mutations in protein sequences (Gouldson et al., 1997; Pazos
et al., 1997), stability under circular permutations (Feng et al., 1999; Hennecke et al., 1999; Otzen
and Fersht, 1998; Tsuji et al., 1999), and experimental studies on the initiation of the protein
folding process (discussed in Rabow and Scheraga, 1993).

3.4 Summary

This chapter presented a novel approach for modeling a group of related proteins without incor-
porating any prior information about the input sequences. The method adapts probabilistic suffix
trees (Rissanen, 1983; Ron et al., 1996) to capture short term statistical dependencies in the input
family by recording significant occurrences of subsequences of variable lengths. The method in-
duces probability distributions over symbols from the empirically observed distributions. These are
extended to score and classify whole sequences. The balance between possibly several recognizable
motifs and unknown regions within a query sequence determines its degree of similarity to the given
model.

Our modeling assumptions are in fact motivated by biological insights into the evolution and
composition of protein families. A group of evolutionary related protein sequences should exhibit
many identical short range statistical patterns of amino acids. This follows from the underlying
evolutionary process. All protein family members descend from a single ancestral sequence. The
different copies of this sequence underwent mutation events. But viable mutations are almost
always pinpointed at a single or a few residues. As a result, homolog sequences will have identical
short segments which have been either preserved by selection, or simply have not diverged long
enough. Fixation of mutations must respect the functional role of the gene, and its encoded protein.
As a result, while mutation would work separately in the different lineages, all would in general
be subject to very similar constraints. Thus, the mutations themselves would be biased, again
contributing to short range similarities. Moreover, by re-examining Figure 2.3 (page 14), we note
that the majority of the longer conserved segments are unique to their particular location along
family sequences. Thus, when we collect their counts from seemingly anywhere within the seed
sequences we often approximate position specific suffixes, without alignment.

The variable memory model with its flexible, data dependent, architecture is well equipped to
pick up these locally conserved short segments, of various lengths, and in various subsets. Indeed,
when the model was applied to protein families in the Pfam database, it was shown to identify
the other members of protein families with surprising success, compared to the state of the art in
family modeling. According to our evaluation procedure, already in its basic form the PST model
outperforms classic pairwise comparison methods such as Gapped-BLAST, and performs as well
as an HMM that is built in a global search mode. These results were obtained when the PST
was trained using a fixed set of parameters for all families. The performance of the PST model is
expected to improve if the parameters are tuned for each family separately, and when all known
sequences of a family are included in the training set, as is the case in established databases of
protein family models (Chapter 2).

Compared to our novel approach, the HMM suffers several disadvantages: For pre-processing it
requires delineation of the conserved region, its multiple alignment, and tagging of non-representative
columns. Sequence weighting is often required to avoid biasing column emission probabilities to-
wards a sub-set of the family. Theoretical hardness results, such as Abe and Warmuth (1992) and
Gillman and Sipser (1994) indicate that they require relatively high quality training sets to perform
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adequately. They are also expensive to run, using quadratic dynamic programming procedures for
both training and prediction.

On the other hand, the flexibility of the PST model does not come without a cost. Our reference
set in this study contained mainly well defined protein families. Modeling more diverged sequence
families using PSTs is prone to be more difficult as short contiguous patterns of conservation
become more scarce. This is indicated in Figure 3.9(f), and has been shown in a recent study by
Sohler and Zien (2001). In such cases, good alignments (typically requiring expert crafting for the
same reasons) may confer more robustness to an HMM approach by pinpointing single conserved
positions (such as active site residues) which can then be used in prediction to anchor the alignment
of a query sequence to the model.

The success of the PST modeling approach in this domain suggests several interesting extensions:
Algorithmically, we have shown that already in its current formulation the PST learning and
prediction phases are much faster than those of HMMs. However, they are still quadratic in the
size of the input set. The increasing growth of protein sequence databases motivates an attempt
to further improve performance. This challenge is met in the next chapter where we optimize PST
performance both in terms of run-time and space requirements. From a statistical point of view, we
have demonstrated that PSTs are relatively robust to over-fitting the training set (Figure 3.4). Yet,
the set of parameters we have used to train these models, motivated by the formulation of Ron et al.
(1996), does not try to answer directly whether a given training set pattern is worthy of memorizing
or not. One such guiding principle, termed minimum description length (Barron et al., 1998) will
be put to use in Chapter 5. In that chapter we will also develop tools that are motivated by the
ability of one PST model to capture several domains simultaneously (Figure 3.7) and attempt to
spilt this model into several ones, each specializing in a certain domain in a heterogeneous input
set. Another challenge is the attempt to enhance the PST models to better capture the data.
Kermorvant and Dupont (2002) use more sophisticated smoothing techniques to compensate for
small sample effects on longer suffixes, to obtain smaller yet accurate PST-like models. Eskin et al.
(2000) add wildcards into the suffix tree structure, thus allowing in principle better handling of
gapped patterns and longer range correlations. However, the sheer magnitude of the combinatorial
space of possible patterns spun by the use of these match-all symbols limits their use in practice
to a minimal number. One final worthwhile direction calls for analysis of the very features the
PST chooses to model a protein family with. One can use these, as Sohler and Zien (2001) did, to
select relevant features for a support vector machine driven classification (see Vapnik, 1998). This
way features selected by the generative PST learning algorithm are fed to a discriminative learning
method. Another discriminative approach (Eskin et al., 2000) classifies any new protein directly
to one of all known families, without going through an explicit generative phase. In Chapter 6
we will take a third discriminative direction, which is more biologically motivated, when we try to
learn one PST model for several families, simultaneously. Such a model can focus on discriminative
features between the given groups while ignoring many features they all share.

This chapter is based on an extended abstract (Bejerano and Yona, 1999) which was a co-
winner of the best paper by a young scientist award at the RECOMB 1999 conference, and was
later developed to journal format (Bejerano and Yona, 2001; Bejerano, 2003a).
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Chapter 4
Algorithmic Optimization

In the previous chapter we have demonstrated the applicability of variable memory models in
analysis of protein sequences. The algorithms we used there were quadratic in the length of the input
set. In this chapter we completely replace the underlying data structure and resulting algorithms
to obtain novel learning and prediction algorithms, which are equivalent to the original ones, yet
are optimally linear in terms of both runtime and memory requirements.

4.1 Reminder

In Chapter 3 we have adapted a family of variable memory models, termed Probabilistic Suffix
Trees (PST), to the task of classifying protein sequences into known protein families. A PST, first
defined by Ron et al. (1996), is a compact, tree-shaped sub-class of probabilistic automata which
approximates the input sequences during training using an underlying Markov process of variable
memory length not exceeding some maximum depth L. The probability distribution generated
by these automata is equivalent to that of a Markov chain of order L, but the description of the
automaton itself is much more succinct (recall Figure 3.1).

Novel protein sequences are being discovered, as a result of genomic sequencing efforts, at an
ever increasing pace, and the relevant databases are quickly approaching the one million sequence
mark. While the above algorithms are already faster than their equivalent HMM procedures, they
are quadratic in the input set length. The process of learning the automaton from a given training
set S of sequences, as defined in Section 3.2.2, requires Θ(Ln2) worst-case time, where n is the
total length of the sequences in S and L is the length of a longest substring of S to be considered
for a candidate state in the automaton. Once the automaton is built, predicting the likelihood of
a query sequence of m characters (Section 3.2.3) may cost time Θ(m2) in the worst case.

In this chapter we will present automata equivalent to PSTs but having the properties that, on
one hand, learning the automaton takes O(n) time, regardless of L, and on the other, prediction
of a string of m symbols by the automaton takes O(m) time. Along the way, we address notions
of empirical probability and their efficient computation, possibly a by-product of more general
interest. We begin by briefly reviewing the important definitions from Chapter 3.

We deal with a (possibly singleton) collection S of strings over a finite alphabet Σ, and use λ to
denote the empty string. The length of S is the sum of the lengths of all strings in it and is denoted
by n. With reference to S and a generic string s = s1s2...sl, the empirical probability P̃ of s is defined
provisionally as the number of times s occurs in S divided by the maximum “possible” number
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of such occurrences. The conditional empirical probability of observing the symbol σ immediately
after the string s is given by the ratio

P̃ (σ|s) =
χsσ

χs∗
,

where χw is the number of occurrences of string w in S and s∗ is every single-symbol extension of
s having an occurrence in S. Finally, suffix(s) denotes s2s3...sl.

We briefly recount the structure of a PST (Figure 3.1). In any such tree, each edge is labeled
by a symbol, each node corresponds to a unique string – the one obtained by traveling from that
node to the root – and nodes are weighted by a probability vector giving the distribution over
the next symbol. In the following, T is the PST, S̄ is the set of strings that we want to check,
or learn, and γs is the probability distribution over the next symbol associated with node s. The
construction starts with a tree consisting of only the root node (i.e., the tree associated with λ) and
adds paths as follows. For each substring s considered, it is checked whether there is some symbol
σ in the alphabet for which the empirical probability of observing it after s is both significant
and significantly different from the probability of observing it after suffix(s). Whenever these
conditions hold, the path relative to the substring (and possibly its necessary but currently missing
ancestors) are added to the tree. As detailed below, the time complexity of this construction is
O(Ln2), where L is the length of a longest string considered for possible inclusion in T .

Given a string, its weighting or prediction by a PST is done by scanning the string one character
after the other while assigning a probability to every character, in succession. The probability of
a character is calculated by walking down the tree in search for the longest suffix that appears in
the tree and ends immediately before that character, the corresponding conditional probability is
then used in calculating the product for all characters (Section 3.2.3). Since, following each input
symbol, the search for the deepest node must be resumed from the root, this process cannot be
carried out on-line nor in linear-time in the length of the tested sequence, the worst-case time being
in fact Θ(m2) for a sequence of m characters. In Appendix B of Ron et al. (1996) a solution is
offered to this issue: a procedure is given to turn the PST into an equivalent not much larger
Probabilistic Finite Automaton (PFA) on which every prediction step does take constant time (as
it translates to a single transition on the PFA). However this procedure may, by itself, cost Θ(Ln2)
time in the worst case.

4.2 Learning Automata in Linear Time

In Section 3.2.2 two variants of the learning algorithm introduced by Ron et al. (1996) were defined.
For clarity of exposition we will focus our attention on the first, presented in Figure 3.2 (page 39).
We briefly recall the parameters used there: L is, again, the maximum length for a string to be
considered, Pmin is the minimum value of the empirical probability in order for the string to be
considered, r (> 1) measures the multiplicative prediction difference between the candidate and
its father per any given character, while α and γmin limit the minimal empirical probability for a
particular character to be of interest. The parameter γmin is also used as the smoothing factor at
the last stage of the construction.

We are interested primarily in the asymptotic complexity of the main part (tree construction)
of the procedure, and in possible ways to improve it. The last steps of smoothing probabilities have
no substantial bearing on the performance and no consequence on our considerations. We see that
the body of the algorithm consists of checking all substrings having empirical probability at least
Pmin and length at most L. Although the number of substrings passing these tests may be smaller
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in practice, there are in principle n− l + 1 possible different strings for each l, which would lead to
Θ(Ln2) time just to compute and test empirical probabilities (nL strings in total each requiring at
least Θ(n)work to test). The discussion that follows shows that in fact overall O(n) time suffices.

Our approach must depart considerably from the algorithm of the figure. There, word selection
and tree construction go hand in hand in Steps B and C. In our case, even though in the end the
two can be re-combined, we decouple these tasks. We concentrate on word selection, hence on the
tests of Step B. Essentially, we want to show that all those words can be tested in overall linear
time, even if those word lengths may add up to more than linear space. For simplicity of exposition
we assume henceforth that S consists of only one string, which will be denoted by x.

4.2.1 Computing Conditional Probabilities and Ratios Thereof

The goal of this Subsection is to establish the following

Lemma 4.1. There is an algorithm to perform the collection of all tests under Step B for all
substrings of S in overall linear time and space.

Notice that S may contain Θ(n2) distinct strings as substrings. Thus, there are two qualifica-
tions to the lemma: one is to show that computation can be limited to O(n) words, the other is
that this can be achieved in overall linear time and space. We now begin with the proof of the
lemma.

Given two words x and y, the start-set of y in x is the set of occurrences of y in x, i.e.,
posx(y) = {i : y = xi...xj} for some i and j, 1 ≤ i ≤ j ≤ n. Two strings y and z are equivalent on x
if posx(y) = posx(z). The equivalence relation instituted in this way is denoted by ≡x and partitions
the set of all strings over Σ into equivalence classes. We use C(w) to denote the equivalence class of
w with respect to x. In the string x = abaababaabaababaababa, for instance, {ab, aba} forms one
such C-class and so does {abaa, abaab, abaaba}. Recall that the index of an equivalence relation is
the number of equivalence classes in it. The following important “left-context” property is adapted
from Blumer et al. (1985).

Fact 4.2. The index k of the equivalence relation ≡x obeys k ≤ 2n.

Proof: For any two substrings y and w of x, if posx(w)∩ posx(y) is not empty then y is a prefix of
w or vice versa (i.e., (C(y) ⊆ C(w) or vice versa). If x is extended by appending to it a symbol not
appearing anywhere else, then the containment relation on subsets of the form posx forms a tree
with |x|+ 1 leaves, each corresponding to a different position, and in which each internal node has
degree at least 2. Therefore, there are at most |x| internal nodes and 2|x|+ 1 nodes, or equivalence
classes, in total. Taking now back the spurious leaf of position (|x|+ 1) yields the claim. 2

Fact 4.2 suggests that we might restrict computation of empirical probabilities to the O(n)
equivalence classes of ≡x. One incarnation of the tree evoked by the above proof – in fact, an
alternate proof of its own – is the suffix tree Tx associated with x. We assume familiarity of the
reader with the structure and its clever O(n log |Σ|) time and linear space constructions such as in
Weiner (1973); McCreight (1976); Ukkonen (1995). The word ending precisely at vertex α of Tx

is denoted by w(α). The vertex α is called the proper locus of w(α). The locus of word w is the
unique vertex α of Tx such that w is a prefix of w(α) and w(Father(α)) is a proper prefix of w.
One key element in the above constructions is in the following easy fact:

Fact 4.3. If w = av, a ∈ Σ, has a proper locus in Tx, then so does v.

61



Chapter 4

s’

v’

v

s

z

rsuf link

(a) (b)

s’
s

z

v’

v

v"

suffix
 link

Figure 4.1: Creating auxiliary suffix links. See text for details.

To exploit this fact, suffix links are maintained in the tree that lead from the locus of each
string av to the locus of its suffix v. Here we are interested in Fact 4.3 only for future reference.
Having built the tree, some simple additional manipulations make it possible to count and locate
the distinct (possibly overlapping) instances of any pattern w in x in O(|w|) steps.

Consider now conditional empirical probabilities, which were defined as the ratio between the
observed occurrences of sσ to the occurrences of s∗. The first observation is that the value of this
ratio persists along each arc of the Tx, i.e.,

P̃ (σ|s) = χs/χsσ = 1

for any word s ending in the middle of an arc of Tx and followed there by a symbol σ. Therefore,
we know that every such word passes the first test under (B), while continuation of s by any other
symbol would have zero probability and thus fail. These words s have then some sort of an obvious
implicit vector and need not be tested or considered explicitly. On the other hand, whenever both
s and suffix(s) end in the middle of an arc, the ratio

P̃ (σ|s)

P̃ (σ|suffix(s))
=

1

1
= 1 .

Since r > 1, then neither r nor 1/r may be equal to 1, so that no such word passes either part
of the second test under B. The fate of any such word with respect to inclusion in a PST (whence
also in the final version of our tree) would depend thus on that of its shortest extension with a
proper locus in it. The cases where both s and suffix(s) have a proper locus in Tx are easy to
handle, since there is only O(n) of them and the corresponding tests take linear time overall. By
Fact 4.3, it is not possible that s has a proper locus while suffix(s) does not. Therefore, we are
left with those cases where a proper locus exists for suffix(s) but not for s. There are still only
O(n) such cases of course, but in order to handle them we need first to perform a slight expansion
on Tx.

Let ν ′ be the proper locus of string s′. We define rsuf(ν ′, ρ) to be the node ν which is the
proper locus of the shortest extension of ρs′ having a proper locus in Tx. In other words, node ν
has the property that w(ν) = sz with s = ρs′ and z as short as possible if z 6= λ (see Figure 4.1a).
If ρs′ has no occurrence in x then rsuf(ν ′, ρ) is not defined.

Clearly, rsuf coincides with the reverse of the suffix link whenever the latter is defined. When
no such original suffix link is defined while ρs′ occurs in x, then rsuf takes us to the locus of the
shortest word in the form ρs′z. Since ν ′ is a branching node, then there are occurrences of s′ in
x that are not followed by the first character of z. In other words, not all occurrences of s′ occur
precisely at the second position of an occurrence of sz = ρs′z, whence posx(ρs′) 6= posx(ρs′z). In
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Locus of suffix(s) locus of s Action for Test I Action for Test II

(1) proper locus ν ′ proper locus ν read weights of locus ν use suffix link
from ν to ν ′

(2) middle of an arc proper locus ν impossible impossible (see Fact 4.3)

(3) proper locus ν ′ middle of an arc single possible use rsuf from ν ′ to aux
extension or surrogate locus of s

(4) middle of an arc middle of an arc irrelevant always fails (see text)

Table 4.1: Synopsis of tests on conditional probabilities.

these cases, we know a priori that P̃ (σ|s) = 1 only for σ equal to the first character of z, but
the value of P̃ (σ|s′) and hence also of the ratio P̃ (σ|s)/P̃ (σ|s′) have to be computed and tested
explicitly. We can do so by treating ν as a surrogate locus of that of s = ρs′, but it is more
convenient for our discussion to add to Tx explicit unary nodes for this purpose. Thus, a special
unary node ν ′′ is created as the proper locus of ρs′, and endowed with a suffix link directed towards
ν ′ (see Figure 4.1b). It should be clear that the total number of such auxiliary nodes in our tree
is bounded by n|Σ|, hence linear for finite alphabets. Table 4.1 summarizes the possible cases and
their respective treatments.

Expanding Tx and computing rsuf’s is an easy linear post-processing of the tree. We have
also seen that attaching empirical conditional probabilities only to the branching nodes of Tx

suffices. As there are O(n) such nodes, and the alphabet is finite, the collection of all conditional
probability vectors for all sub-words of x takes only linear space. Given Tx, the computation of
such probabilities is trivially done in linear time. With reference to Table 4.1, the only tests to be
taken are of type (1) and (3), and there are O(n|Σ|) such tests of each kind, both associated with
the nodes of the tree. Specifically, there are |Σ| comparisons at the nodes ν and ν ′ under (1), and
|Σ| possible extensions of the words s′ associated with nodes ν ′ under (3).

This concludes the proof of Lemma 4.1. 2

4.2.2 Building the New Amnesic Automaton

At this point we can already outline an O(n|Σ|) procedure by which words are selected for inclusion
in our automaton and the automaton itself is built.

1. Substrate preparation: Build a compact suffix tree Tx for x. Add auxiliary unary nodes
as described.

2. Word selection: Determine the words to be included in S̄ and thus in the final automaton.
For this, visit the nodes of Tx bottom up, compute χ-counts and conditional probabilities,
and run the tests of Step B on these nodes. Mark the root and all nodes passing the test.
For every node marked, follow the path of suffix links to the root and mark all nodes on this
path currently unmarked.

3. Tree Pruning: Visit the tree in some bottom up order, and prune the tree cutting all edges
immediately below every deepest unmarked nodes.

In practice, the operations above would be more suitably arranged and combined without
this affecting their global complexity. Let H denote the pruned version of Tx resulting from this
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treatment. As is easily seen, the set of words having proper loci at a marked node of H contains
that of the words associated with the nodes of the PST resulting from the algorithm of Figure 3.2.
In particular, the marking of all nodes on the suffix path of a marked node corresponds to admitting
into the tree all suffixes of every admitted word.

Fact 4.4. If word w is spelled out on some path from a node to the root of the PST T , then w
has a marked proper locus in H.

This fact shows just how the PST T is embedded in H: to extract T from H, take the marked
nodes of H and the rsufs edges connecting these nodes, and then possibly prune some fringes
at the bottom of the tree thus obtained. Any marked node v in H that does not appear in T
corresponds to a node that the PST algorithm would have inserted had it gotten to it (or to a
marked descendant of it). However, due to the top-down nature of the PST algorithm combined
with a possibly non-monotone notion of P̃ , if any node along the rsuf path of v fails test C (even
though v itself passes it), node v would never be examined by the PST algorithm1. One might
argue that these nodes should have also been included in T and hence must stay, or modify the
pruning of Tx so that these nodes are excluded from H as well (this requires one walk on rsufs).
Yet another alternative is to defer the tests of Step C altogether to the weighting phase, in which
they may be performed on the fly, where desired, without this affecting the time complexity of that
phase. This issue shall be further discussed in Section 4.5.

Essentially, H is a compact Trie resembling the basic structure of a Multiple Pattern Matching
Machine (MPMM) (see Aho and Corasick, 1975). The import of this is that, on such a machine,
substrings undergoing tests are scanned in the forward, rather than reverse, direction while traveling
on paths that go from the root to the leaves of the automaton. The full-fledged structure of MPMMs,
with failure-function links etc., ensures that while the input string is scanned symbol after symbol,
we are always at the node of the MPMM that corresponds to the longest suffix of the input having
a node in the MPMM. Also by the structure of MPMMs, running a string through it takes always
overall linear time in the length of the string. However, our MPMM is non-standard in that explicit
nodes (and associated failure pointers) might be missing along the arcs of Tx. The total number of
such nodes might amount to Θ(n2) in the worst case. One might consider to add such nodes on the
fly during prediction at a cost of constant time per character, and charge the predicted sequence(s)
with the corresponding O(m) work. In the next section, we study means of surrogating the missing
nodes and links within the O(n) time allocated to learning. We conclude this section by recording
the following

Theorem 4.5. The probabilistic automaton H contains T and all the information stored in T ,
and can be learned in linear time and space.

4.3 Implementing Linear Time Predictors

In this section, we assume we are given a pruned tree H with its nodes suitably weighted and
marked, and we tackle the problem of how to use this tree for prediction. We consider two different

1Note, for example, that the notion of P̃ we use is non-monotone, i.e. there may be w ∈ Σ? and σ ∈ Σ s.t.
P̃ (w) < P̃ (σw). Consider the case where Σ = {a, b} and x = baabaa. A simple calculation shows that 0.4 = P̃ (aa) <

P̃ (baa) = 0.5. This means that if the threshold in test C is set to 0.45 the node corresponding to baa will not be
examined for inclusion in T , because its father node, corresponding to aa, will fail to pass test C. However, As H
prunes bottom-up, it will encounter the node corresponding to baa. This node may very well pass test B, and as a
result both it and its father will be included in H.
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Figure 4.2: Adding direct auxiliary links. (a) If ν′

does not exist and yet f > f ′ then the suffix path p leads
us to a contradiction. (b) Thus, if ν′ does not exist, it must
be that f < f ′. We wish then to hold a link from ν to µ,
the end point of path q. (c) Finally, If ν′ exists, we wish to
hold a link from ν′ to µ, the end point of the reverse suffix
path p−1. Refer to the text for details.

scenarios for prediction, depending on whether the string s is assumed to be fed to H one character
at a time from left to right or backward, beginning with the last character. We first sketch our
treatment of the first case, and then discuss the second one in full detail.

In a left-to-right scanning, we want to maintain that at the generic step where we have read
the prefix s1s2...sj−1 we find ourselves at the marked node ν of H that is the proper locus for the
longest suffix of s1s2...sj−1 among those suffixes that have a marked proper locus in H.

Let us say that a node µ has a direct σ-child in H if µ has a child node µ′ reachable through
an edge labeled only by the character σ ∈ Σ. Node µ is then the direct father of µ′. Back to the
discussion, our approach distinguishes two cases, depending on whether or not the node ν has a
direct sj-child. We consider first the case where ν does not have a direct sj-child. This is the easier
case, as the following lemma gives the handle for it.

Lemma 4.6. Let w(ν) = sfsf+1...sj−1 and w(µ) = sf ′sf ′+1...sj be the longest suffixes of s1s2...sj−1

and s1s2...sj , respectively, having a marked proper locus in H. If ν has no marked direct sj-child,
then f ′ > f .

Proof: The condition f = f ′ is impossible, since the only way for this to happen would be if
ν had a marked direct sj-child. Since this is denied by hypothesis, then we are left with one of
the following three possibilities: there is an edge to a child ν ′ of ν labeled by a string that begins
with sj but consists of more than one character; there is no edge from ν whose label begins by sj

altogether; ν had a direct sj-child ν ′ but ν ′ is not marked. For each of these cases, we have to look
elsewhere in H than among the children of ν to find the deepest possible marked proper locus µ
of a suffix of s1s2...sj . Assume now for a contradiction that we found µ such that f > f ′. Since µ
must be a marked node in H then so must be by construction all nodes that are proper loci of the
suffixes of w(µ) = sf ′sf ′+1...sj. Among these nodes, we find, in particular, the marked proper locus
of sfsf+1...sj . But then ν has a direct sj-child, which contradicts the hypothesis (seeFigure 4.2a).
2

Consider now our second case, in which ν has a marked direct sj-child ν ′ in H. This case is
trivial to handle whenever ν ′ cannot be reached from a marked node through a path of suffix links
labeled by some suffix of s1...sf−1. Indeed, if no such path exists then traversing the edge to ν ′

propagates our invariant condition to s1s2...sj , in constant time. If, on the other hand, such a
path does exist, then the node on the longest possible such path is the node µ that we are seeking.
Note that node µ depends on the structure of s and does not necessarily coincide with the deepest
marked node encountered on an rsuf path from ν ′.

We now outline the computations involved in prediction when s is fed to H one symbol at a
time from left to right. The cases contemplated in Lemma 4.6 are handled in constant time per
symbol if we add to H links from every marked node and alphabet symbol to the closest node
reachable by a number of direct transitions on suffix links followed by exactly one transition on a
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direct downward tree edge (see Figure 4.2b). These links are easy to set in time linear in the size
of H.

To handle the case of a marked direct child node ν ′ of ν, we need to access, on the fly, the
deepest marked node µ that is found on a reverse suffix path from node ν ′ above, and such that
w(µ) corresponds to a suffix of s1s2...sj (see Figure 4.2c). This is made possible by a preprocessing
on s which consists of running a multiple pattern matching for the (longest) substrings ending at
marked nodes of H. For this, H itself is suitably adapted (in linear time) in order to be treated
as a standard MPMM. The information collected in this way is used during the weighting stage.
Intuitively, we use the tracks left behind by s on its trail in the MPMM, and this enables us now
to locate, in constant time, the deepest rsuf descendant of ν ′ which is compatible with a suffix
of s1s2...sj. The net worth is that now there is one transition to the appropriate marked node for
every symbol of s, whence s is weighted in linear time.

Note that H is in compact form, so that specifying failure transitions on it while keeping the
O(n) time and space is not obvious. The details are deferred to a forthcoming paper. In what
follows, we concentrate on the alternative assumption that s is available off-line so that it can be
fed backwards to H. Since we are interested only in the product of all sub-terms, the order in which
they are calculated may be altered at will. We show a simple and elegant linear time prediction
phase that works for this case.

Theorem 4.7. Given the automaton H, there is an algorithm to weight any string s in overall
O(|s|) time.

Proof: We retain the preprocessing that assigns, to every node ν, a pointer to the closest marked
node µ that can be reached following suffix links from ν (Figure 4.2b). The bulk of the algorithm
consists of walking on the rsuf links of H in response to consecutive symbols of sR = smsm−1...s1,
making occasional steps “sideways” along an edge of H . The work is partitioned in batches of
operations where each batch advances our knowledge of the deepest marked nodes for a certain
number of suffixes of sR. Each batch is associated with a substring of sR and the work it performs is
linear in that substring. Consecutive batches parse sR into consecutive non-overlapping substrings
of sR, whence the linear overall bound. Batches are issued at a subset of the set of positions of sR,
and each batch faces a primary task and a maintenance task. If a batch is invoked in connection with
sjsj−1...s1, the primary task of the batch is to find the two nodes µ = reach(j) and ν = mark(j)
which correspond, respectively, to the deepest and deepest-marked node on the path of rsufs from
the root that is labeled by a prefix of sjsj−1...s1. A by-product of the primary task is to weight
symbol sj. The maintenance task is explained in what follows.

The batch for j starts having being handed a node θ = start(j) on the rsuf path for sjsj−1...s1

(consult Figure 4.3a). Let sjsj−1...sh be the word labeling the rsuf path from the root to node θ,
and consider the path P of original Tx edges that connect the root of H to θ. Prior to inception of
this batch, the following conditions hold.

1. For all suffixes sksk−1...s1 with k > j, mark(k) is already known.

2. Consider the collection of all rsuf paths that are defined by walking from the root of H until
the path ends or a node of P is met (Each such path is the path or a prefix of the path to
mark(k) for j ≥ k ≥ h). For k = j, j− 1, ...h, mark(k) is currently set to the deepest marked
node on its corresponding path.

The work begins at θ by following rsufs while parsing the symbols that follow sh in sR until
node µ is found. The algorithm climbs to θ′ =Father(µ), the father node of µ, which will be passed
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Figure 4.3: Parsing a batch in backwards mode. The text holds the full details.

on to the next batch where it will take the place of θ. The string s̄ = sh−1sh−2...sf , connecting θ
to µ, is the substring of sR contributed by this batch to the parse of sR mentioned above. At this
point, we know the final value of mark(j), since this must be either the deepest node known when
the batch begun, or the deepest node encountered while scanning s̄.

Since w(Father(µ)) is a prefix of w(µ), then the rsuf path from the root to Father(µ)
corresponds to some suffix sj′sj′−1...sf of sjsj−1...sf . The scan beginning at start(j′) = Father(µ)
will map into a substring sf−1sf−2...sd of sR that immediately follows s̄ and thus has no overlap
with this string . Before the new batch at j′ can begin, however, Invariants 1 and 2 must be
restored. We thus address the maintenance task of the batch.

Let φ be the lowest common ancestor of µ and θ in H (consult Figure 4.3b). The only nodes
where the Invariants might have been infringed are those found in the subtree W of H which is
rooted at φ and has leaves at the nodes encountered on the path of s̄ from θ to µ. The invariants are
restored by visiting this subtree and checking, for every node in it, whether the pointer to the closest
marked node gives an improvement over the current corresponding value of mark. Application of
an argument already used in Lemma 4.6 to nodes µ and Father(µ) shows that, in particular, this
treatment propagates Invariant 1 to all values of k in the interval [j, j′), i.e., Invariant 1 now holds
for all k > j′. The number of nodes encountered in the visit is bounded by |s̄|, the number of
leaves, whence the work involved is linear in |s̄|. 2

4.4 Computing Empirical Probabilities

We consider here, in greater detail, the notion of empirical probability for a string and its related
computations. This notion is not straightforward. Fortunately in the algorithm – in so far as the
construction of the automaton goes – we are interested primarily in conditional probabilities which
turn out to be less controversial.

One ingredient in the computation of empirical probabilities is the count of occurrences of a
string in another string or set of strings. As seen, although there can be Θ(n2) distinct substrings
in a string of n symbols, Fact 4.2 and the very structure of Tx show that linear time and space
suffice to build an implicit table of χw counts of all strings w in x.

One way to define the empirical probability P̃ (w) of w in x is to take the ratio of the count χw

to |x|−|w|+1, where the latter is interpreted as the maximum number of possible starting positions
for w in x. This corresponds to viewing P̃ (w) as χw divided by χ|w| (i.e., how many of the overall
n− l + 1 substrings of length l were actually w)2. From the computational standpoint, for w and v

2This definition has a convenient probabilistic quality in that ∀l = 1, 2, ..., L
∑

|w|=l
P̃ (w) = 1.
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much shorter than x we have that the difference between |x|− |w|+1 and |x|− |wv|+1 is negligible
(this is not automatically true for any set S of k strings, where we would have |x| − k|wv| + 1),
which means that the probabilities computed in this way and relative to words that end in the
middle of an arc of Tx do not change, i.e., computing probabilities for strings with a proper locus
is enough to know the probabilities of all substrings.

This notion of empirical probability, however, assumes that every position of x compatible with
w length-wise is an equally likely candidate. This is not the case in general, since the maximum
number of possible occurrences of one string within another string crucially depends on the compat-
ibility of self-overlaps. For example, the pattern aba could occur at most once every two positions
in any text, abaab once every four, etc. Compatible self-overlaps for a string z depend on the
structure of the periods of z. A string z has a period w if z is a prefix of wk for some integer k.
Alternatively, a string w is a period of a string z if z = wlv and v is a possibly empty prefix of w.
When this causes no confusion, we will use the word “period” also to refer to the length or size |w|
of a period w of z. A string may have several periods. The shortest period (or period length) of a
string z is called the period of z. A string is trivially always a period of itself. It is not difficult to
see that two consecutive occurrences of a word may overlap only if their distance equals one of the
periods of w. Along this line of reasoning, we have

Fact 4.8. The maximum possible number of occurrences of a string w into another string x is
equal to (|x| − |w|+ 1)/|u|, where u is the smallest period of w.

If we wanted to compute the empirical probabilities of, say, all prefixes of a string along the
definition of Fact 4.8, we would need first to know the periods of all those prefixes. In fact, by a
classical result of string matching, the period computations relative to the set of prefixes of a same
string can be carried out in overall linear time, thus in amortized constant time per prefix. We
refer for details and proofs to e.g., Aho and Corasick (1975); Apostolico and Galil (1997). Such
a construction may be applied, in particular, to each suffix sufi of a string x while that suffix is
being inserted as part of the direct tree construction. This would result in an annotated version of
Tx in overall quadratic time and space in the worst case.

Perhaps more interestingly, we have that for empirical probabilities defined per Fact 4.8 the
following holds.

Theorem 4.9. The set of values P̃ (w) = χw · |u|/(|x| − |w|+ 1) can be computed for all words of
x that have a proper locus in Tx in overall linear time and space.

Proof: Simply compute periods while walking on suffix links “backward”, i.e., traversing them in
their reverse direction, beginning at the root of Tx and then going deeper and deeper into the tree.
This walk intercepts all nodes of Tx. Correctness rests on the fact that for any word w the periods
of w and wr coincide. 2

Note, however, that since the period may vary in the middle of an arc, so could the empirical
probabilities computed in this way. This weakens the assumption that the probability of a short
word ending in the middle of an arc is surrogated by that of the shortest extension of that word
with a proper locus. Fortunately, the discussion that led to Fact 4.4 shows that T , being nothing
but a subgraph of H connected by rsufs, only needs the O(n) probabilities at the O(n) nodes of
H, irrespective of how such probabilities are defined.

4.5 Final Remarks

Using the known duality between direct and reverse suffix links, it is natural to revolve our previous
construction around and learn trees for the reverse of the strings in set S. Indeed, the PST tree
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structure itself is but a subtree of the expanded suffix tree of SR. In such a dual construction,
the learning phase is concerned with building a suitable, reverse-annotated tree of xR while the
weighting phase will traverse this tree.

Another algorithmic challenge set forth by this work concerns setting up procedures of unsu-
pervised learning that can follow some initial training phase. Once some version of the automaton
is constructed from an initial set of positive examples, one wishes to easily learn a new example,
i.e. update it in linear time, in the very same manner all previous examples in S were assimilated
one by one. The same goes for removing a sequence from our pool. Along these lines, we develop a
simple incremental learning scheme – start off with some initial seed S from which the concept is
first built. Then, while predicting over query sequences, one may, when coming across a sequence
that, with high likelihood, belongs to the family – efficiently assimilate it into the learned structure
before proceeding. Similarly, one may from time to time go over the list of sequences composing S
and check whether due to the evolution of the concept some members no longer fit the concept -
these may then be efficiently rejected. This is a useful feature to have when learning from noised
or error-prone data, as is our case.

Other, closely related, benefits stem from deliberately abstaining from pruning our trees or
pre-smoothing the head count vectors implicit in them. These facts will allow us in Chapter 5 to
couple the incremental nature presented above with a form of an annealing schedule (see Rose,
1998). Namely, we may start off with a rather permissive notion of a significant pattern and an
appropriate smoothing technique, and gradually during learning, while we evolve our notion of a
family, and hopefully put it on firmer grounds, we may “cool down” our system by increasing the
threshold for significance, while lowering the impact of smoothing. We may also alter L, now taken
as the maximal prediction (but not learning) depth, similarly.

This chapter is based on an extended abstract (Apostolico and Bejerano, 2000a) which was
presented at RECOMB 2000, and was later developed to a journal version (Apostolico and Bejerano,
2000b).
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Markovian Protein Sequence Segmentation

In the last two chapters we have shown that variable memory models can capture the notion of a
protein family from a given seed of unaligned sequences, using very efficient training and subsequent
prediction algorithms. Motivated by these results we turn to the much harder task of segmenting
a given set of unlabeled, unaligned sequences into the domains that compose them. In this chapter
we present and calibrate a novel algorithmic approach to this task, and apply it to protein datasets.

5.1 Introduction

In Chapters 3–4 we have focused on a specific variant of variable memory modeling (VMM), termed
Prediction Suffix Trees (PST). These models were adapted there to the task of modeling protein
sequence families from labeled seeds, and subsequent clustering of novel sequences to their respective
families. In that task we have extensively compared PST performance to that of profile hidden
Markov models (HMM), considered the state of the art in this field.

A much harder task is that of searching protein sequences for novel domains, of which no
previously labeled examples are available.

Goal. Given a set of unaligned, unannotated, possibly multi-domain protein sequences, segment
these into their underlying, recurring, domains.

One such example is produced by protein-protein interaction measurements. Through a set of
such experiments one often comes up with a subset of proteins, all of whom interact with a certain
other protein. A plausible hypothesis in this case would be that the ability to interact with the
latter is conferred by a domain found in all (or many) of the interacting proteins.

We recall from Section 2.2.1 that HMMs are predefined parametric models and their success
crucially depends on the correct choice of the state model and observation distributions attached
to each of the states of the Markov chain. In our context the architecture and topology of the
profile HMM are predetermined by the family seed multiple sequence alignment (MSA), typically
hand crafted in advance by an expert. Subsequent HMM training is thus limited to calibration of
the resulting model parameters, such as emission probabilities, etc. The memory property of these
models is limited to first order dependency on the assumed MSA column position. As a result it is
rather difficult to directly generalize these models to hierarchical structures with unknown a-priory
state topology. This, however, is the situation in our case, when presented with a set of sequences
on which very little, possibly nothing, is known in advance.
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Meta-Meme (Grundy et al., 1997), described in Section 2.3.2, proposes one indirect approach to
this problem, in the context of protein sequences. We briefly recall that Meta-Meme first searches
the group of unaligned sequences for over-abundant sequence segments, which can be represented
by simple ungapped profiles. The algorithm then goes on to make a very restrictive assumption,
that all given input sequences share a single N- to C-terminal structure, and tries to infer the best
underlying linear ordering of the found motifs. This results in a very simple HMM architecture and
topology (Figure 2.8), composed of a set of profiles, each given by a series of match states, with
single insert states between consecutive profiles. More flexible approaches to HMM architecture
and topology inference do exist (e.g., Fine et al., 1998; El-Yaniv et al., 1998), albeit not in our
context.

As we have already seen, PST models are very different in this respect. In particular, model
architecture determination is central to the PST learning process (Section 3.2.2), and requires no
external pre-processing. While they can be weaker than HMMs as generative models, we have
seen that they are able to capture longer correlations and higher order statistics of the underlying
sequence. In fact, we have shown in our experiments that when presented with a dataset containing
repetitions of several domains, a single PST model may be able to capture all of these (Figure 3.7–
3.8). This property stems from two observations: that different protein domains have different
conserved k-mer vocabularies, and that our data driven learning algorithm captures all of these
together in a single model. This last property has lead us to attempt to take such a PST model and
try to split it in an automated manner into several separate PSTs, each modeling a single domain
in the given set. Our resulting model can in fact be viewed as an HMM with a VMM attached to
each of its states. However, our learning algorithm allows for a completely adaptive structure and
topology both for each state and for the whole model.

The approach we take for this task is information theoretic in nature. For this purpose we
will first revise our learning algorithm for a single PST model to fit an unsupervised setting. We
will then define a novel algorithm for sequence segmentation and clustering of statistically similar
segments into different PST models. The problem of learning a stochastic mixture of generative
models is known to be computationally hard in general, similarly to data clustering, with only very
simple generation schemes that can be segmented correctly in an efficient manner (Freund and Ron,
1995). And yet, as we demonstrate later in this chapter, they are very much applicable to protein
sequence segmentation.

5.2 Non-Parametric PST Training

Both the learning algorithm of Figure 3.2 (page 39) and its optimized successor from Section 4.2.2
require a set of five user-controllable parameters. Each of these is involved in different aspects of
the algorithm: determining the maximal length of memorized suffixes, how abundant must they be
and how much must their prediction vector differ from that of shorter suffixes to justify inclusion in
the resulting tree. These parameters give the researcher the needed freedom when trying to model
in a supervised manner protein families which differ in size, in length, and in conservation levels
and patterns. Given a subset of family members one can, through techniques of cross validation,
search for the best combination of parameters that model this family. For our new unsupervised
segmentation goal this definition is unwieldy. We turn to replace it with a non-parametric variant
which strives for the same modeling goal, yet requires no external user supplied parameters.

To do so, we turn to the minimum description length (MDL) principle (Barron et al., 1998),
which weights the suggested model complexity against the complexity of the observed data. Given a
model of the input sequences, a PST in our case, we use it to code as compactly as possible the data
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itself into a uniquely decodable binary string. This coding is also termed lossless compression.
We define the description length (DL) of the PST T and data x̄ pair as the combined cost of
describing the PST model itself and coding the sequences using it,

DL(T, x̄) = DL(T ) + DL(x̄|T )

Given a dataset x̄, we would like to model it using the PST T that minimizes the above combined
expression. This approach contrasts the two opposed modeling extremes. A trivial PST minimizes
DL(T ) but results in a long inefficient coding of the data. On the other hand, the PST that best
describes the given sequences and minimizes DL(x̄|T ) runs a high risk of over-fitting the data by
modeling statistically insignificant patterns. However, this excessive modeling results in an increase
of DL(T ) disfavouring the choice of this model. Thus we see that this simple principle results in
a model whose complexity is governed by the length of the input sequences as well as by their
statistical richness, which is compressed using the PST data structure. From a theoretical point
of view the MDL principle can also be shown to relate to other model selection criteria such as
Bayesian inference (see Barron et al., 1998).

We turn to present the algorithm, extending the notations of Section 3.2.1. The inputs to the
algorithm are a string x̄ = x1..xn and a vector of weights w̄ = w1..wn, where each wi is a weight
associated with xi (0 ≤ wi ≤ 1). A single string is used for ease of exposition, and can be easily
generalized (as was done in Section 3.2.1). For clarity we will also denote w(xi) ≡ wi. Later on,
in a multiple PST setting, w(xi) will serve as a measure of confidence that a given PST generated
the observation xi. For now we may simply assume ∀wi = 1.

For a string s we denote sxi ∈ x̄ if it is a substring of x̄ ending at index i. We define

ws(σ) ≡
∑

xi=σ and sxi∈x̄

w(xi)

w(s) ≡
∑

σ∈Σ

ws(σ)

Clearly ws(σ)
w(s) is an empirical estimate for Ps(σ) ≡ P̃ (σ|s). We denote by Ps the resulting probability

distribution vector for all σ ∈ Σ. We smooth these probabilities uniformly using Krichevsky-
Trofimov estimators resulting in

γs(σ) =
ws(σ) + 1

2

w(s) + 1
2 |Σ|

as these ensure good bounds on the distance between the two distributions for small sample sizes
(Krichevsky and Trofimov, 1981).

We turn to compute the description length, DL(T ), of a given PST. Coding for the tree skeleton
requires |Σ| bits per node. Each such bit denotes the non/existence of the respective son node.
Note that ordering these bits according to Σ saves us the coding of the node label explicitly. In
addition we should code all probability distribution vectors {Ps}s∈T . Note, that the distribution
vector Ps is used to code only those xi’s, for which sufT (x1..xi) = s. Thus the total amount of
data that is coded using Ps is at most w(s), and exactly w(s) for leaf nodes. In order to achieve
a minimal description length of the vector Ps together with the fraction of the data that is coded
using Ps, the counts ws(σ) should be coded to within accuracy of

√

w(s) (see Barron et al., 1998).
Each node s holds |Σ| such counts, thus the total description length of a node s is

Size(s) = |Σ|+
|Σ|

2
· log2(w(s))
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Denoting by Ts the subtree of T rooted at node s,

Size(Ts) = Size(s) +
∑

σs∈T

Size(Tσs)

and DL(T ) = Size(Tλ), where λ denotes the empty context at the root node of T ≡ Tλ.
Now, we compute the description length of the data given the PST, DL(x̄|T ). Information

theory teaches us that the minimal attainable average code length per symbol, for all symbols
coded using node s, is the entropy of the distribution Ps (Cover and Thomas, 1991),

H(Ps) ≡ −
∑

σ∈Σ

Ps(σ) log2 Ps(σ)

Note that this is also the average per symbol surprise, discussed in Section 3.3.2. Consider all input
sequence data coded by nodes at the subtree Ts, i.e., all xi for which s is a suffix of sufT (x1..xi−1).
They can either be coded by s itself or by a deeper node within Ts:

• If x1..xi−1 ends with σ̂s for σ̂s /∈ T , then xi is coded using Ps and the average code length of
xi is H(Ps). This will happen w(σ̂s) times out of the w(s) times we visit s.

• If σ̂s is present in T , then xi is coded according to the distribution of some node in Tσ̂s, and
the average code length will be the entropy of the distribution in that node. This will also
happen w(σ̂s)

w(s) out of the times we visit s.

Thus the entropy of a tree node Ts satisfies the recursive definition:

H(Ts) =
∑

σ̂s∈T

w(σ̂s)

w(s)
·H(Tσ̂s) +

∑

σ̂s/∈T

w(σ̂s)

w(s)
·H(Ps)

and the code length of all data coded by Ts is thus w(s) ·H(Ts). We conclude that

TotalSize(Ts) = Size(Ts) + w(s) ·H(Ts)

Our goal is thus to minimize

DL(T, x̄) = TotalSize(Tλ) = Size(T ) + H(T ) ·
n

∑

i=1

wi

In a simple single source scenario each wi = 1 and thus the second term DL(x̄|T ) = n ·H(T ), where
n is the length of x̄ and H(T ) is the average length of a code-word in T .

Our algorithm proceeds in two steps. In step I we extend all the nodes that are potentially
beneficial, i.e. by using them we may decrease the total size. Of interest are thus only those nodes
whose description length is smaller than the code length of data passing through them when that
data are coded using the parent node distribution. Then, in step II the tree is recursively pruned
so that only truly beneficial nodes remain. If a child subtree Tσs of some node s gives better
compression (respecting its own description length) than that of its parent node, that subtree is
kept, otherwise it is pruned. The resulting algorithm is given in Figure 5.1.

5.3 Markovian Segmentation Algorithm

Having defined a self-regulated non-parametric variant of the PST learning algorithm, we turn to
define the segmentation task, through the use of mixture models.
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Learn PST(String x̄, Weights w̄)

1. T = Build PST(x̄, w̄)

2. Prune(T , λ)

Where the two steps are:

I. Build PST (String x̄, Weights w̄)

1. Start with T having a single node λ.

2. Recursively for each s ∈ T and σ ∈ Σ

If Size(σs) < H(Ps) · w(σs)

Then add node σs to T .

II. Prune (Tree T , node s)

1. For each σ ∈ Σ such that σs ∈ T :

(a) Prune(σs)

(b) If TotalSize(Tσs) > H(Ps) · w(σs)

Then delete subtree Tσs

Figure 5.1: A non-parametric MDL driven PST learning algorithm.

5.3.1 Mathematical Goal

Given an input string x̄ = x1..xn (which for ease of notation represents our set of sequences, as
before), we will try to approximate its generation using a mixture of PST models. We will assume
the existence of k distinct PST models T = {Tj}

k
j=1. To generate x̄, we start by probabilistically

choosing one of the models Tj1 . We then generate a series of symbols using this model, as in
Section 3.2.3. At some random time i we switch to using a second model Tj2, which is used to
generate the next segment, and so forth, until some Tjl

, for l > k, has been used to complete the
emission of all of x̄.

Ideally we would like to fit, say T1, to some background distribution of amino acids and all other
models, each to a single sequence domain, and have x̄ generated according to the exact structural
boundaries, with T1 emitting all unstructured regions and each Tj emitting the occurrences of the
domain it models. The generation of the sequence set x̄ is thus fully described by:

• An appropriate number of mixture components k,

• A set of k PST models T ,

• The exact switching times and order in which this mixture has emitted x̄.

Denoting the above triplet as θ, our goal is to find a combination that maximizes p(x̄|θ). By trying
to fit this modeling scheme to our data we rely on two strong assumptions: That each structural
domain appears a sufficient number of times in the input set, such that knowledge of the exact
domain boundaries would allow us to build a reliable PST for it, using the technique of the previous
section. And that each domain occurrence in the input set is long enough to allow significantly
better modeling using the correct model, compared to the other models generating the set. Clearly,
the more instances of a given domain in the set, the better, more distinctly we can model it.

Finally, note that this formulation performs clustering of sequence segments of the given input
sequences into the different PST models.
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(a) Gradient descent (b) Annealing

Figure 5.2: Schematic comparison of optimization approaches. (a) A schematic depiction of the
parameter space, whose likelihood we wish to maximize. In bold we show how gradient descent from an
initial guess greedily converges to the nearest local optimum, having explored very little of the parameter
space. (b) By solving a succession of less and less smoothed versions of the parameter space, an annealing
approach tends to explore more of it, before converging to an optimum which can be very far from our initial
guess, possibly the global one.

5.3.2 Conceptual Framework

If we assume that k, the number of generating models is known, we face a k components finite
mixture model, similar to the two component mixture model defined by MEME (Bailey and Elkan,
1994). In Section 2.3.2 we reviewed the expectation-maximization (EM) approach used by MEME.
The same approach could be extended to handle k PSTs. Starting from an initial guess of models
T 0, one can estimate a segmentation induced by the set using Bayes rule, and then hold the
segmentation fixed and retrain a new set of models based on the segmentation to obtain T 1. After
each iteration of these two steps the likelihood is guaranteed to increase, i.e. p(x̄|θt+1) ≥ p(x̄|θt),
ensuring that the process converges to a local maximum. However, as noted in Chapter 2, this
greedy hill climbing approach typically converges to the nearest local maximum, after exploring
very little of the riddled parameter space.

Rather than running many restart points, using different amounts of models we will opt for
a deterministic annealing (DA) approach (Rose, 1998), which tries both to aim for the global
maximum and directly infer the number of mixture components. Instead of directly trying to solve
the original optimization problem, the DA approach solves a series of successive problems. The first
problem solved is an extremely smoothed version of our optimization problem, where typically only
a single extremum exists. The (global) solution of this convex problem serves as the starting point
to the next surface, which is less smooth than its predecessor, and thus resembles more the surface
of interest. Thus, we can employ EM to solve a series of increasingly harder optimization problems,
in the hope that the gradual refinement of the parameter surface will allow us to explore more than
the immediate neighbourhood of our initial guess and converge to a better local optimum, possibly
the global one. The difference between the two approaches is drawn schematically in Figure 5.2.

To guide us in the successive refinement of the parameter space we employ further information
theoretic concepts. We consider the clustering of sequence segments into the different PSTs as a
form of lossy coding. Namely, we consider each sequence symbol as replaced by the model that
emitted it. Since the emitting PST is stochastic, we define the distortion due to this replacement
based on the probability the PST assigns to that symbol. Now, instead of directly trying to
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maximize the likelihood, we turn to minimize the distortion between models and sequences, through
a succession of intermediate distortion levels. This framework can also be shown to prefer solutions
using a smaller amount of models (Rose, 1998). Thus, we will gradually increase the number of
models available to the algorithm at every phase. Some of these will model no data, others will
become identical to existing models. The former will be discarded, and the latter will be merged.
The end result is a self regularizing algorithm which also tries to infer the number of mixture
components while minimizing clustering distortion.

5.3.3 Soft Segment Clustering

Let T = {Tj}
k
j=1 be the set of k PSTs we are currently working with. We define wj(xi) ≡ P (Tj |xi)

to be the probability that a symbol xi is assigned to model Tj , given the context of xi in x̄, which
is omitted for clarity of notation. The vector w̄j of weights will later be used to retrain Tj.

As described in the previous section we will cast the clustering problem as a lossy coding
one, and assume that each sequence symbol is replaced by the PST which has generated it. To
quantify the imprecision introduced by this substitution, a natural distortion measure would be
d(xi, Tj) = − log PTj

(xi|x1 . . . xi−1). This measure is non-negative, it is equal to zero only when the
PST would emit the sequence symbol xi with probability one, and it is additive in a natural way.
We enhance this measure by introducing a smoothing window of size 2M + 1 around symbol xi,
setting

d(xi, Tj) = −
i+M
∑

α=i−M

log PTj
(xα|x1 . . . xα−1) (5.1)

The purpose of the symmetric window around xi is to force the models to alternate in a controllable
manner, allowing for smoother segmentation, and reliable likelihood estimation. This local measure
can then be summed to define the (global) distortion between a segmentation into a set of PSTs,
and the input sequences,

〈d〉 =
1

n

n
∑

i=1

k
∑

j=1

d(xi, Tj) · P (Tj |xi)

Here, and elsewhere, we approximate the unknown average over p(xi) with the normalized sum
over the sample x̄. Minimizing the distortion is thus seen to be closely related to maximizing the
likelihood of the models and segmentation.

We can now define the inner loop of our algorithm, of soft clustering the data into models at a
prescribed distortion level. We use an EM-like approach that alternates between finding the optimal
sequence segmentation for a fixed set of models, and model retraining given a fixed segmentation.
We begin by finding the optimal assignment, or segmentation probabilities P (Tj |xi) for a fixed
set of PSTs, T , constrained by the allowed distortion level D. Rate distortion theory (Cover and
Thomas, 1991, Ch. 13) teaches us that the optimal assignment is obtained by solving

R(D) = min
{P (Tj |xi) : 〈d〉≤D,

∑k

j=1
P (Tj |xi)=1}

I(x̄,T ) (5.2)

where I is the mutual information between x̄ and T

I(x̄,T ) =
1

n

n
∑

i=1

k
∑

j=1

P (Tj |xi) · log
P (Tj |xi)

P (Tj)
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Blahut-Arimoto(P (T ), β)

Repeat until convergence:

1. ∀i, j : P (Tj|xi) =
P (Tj)e−βd(xi,Tj)

∑

k

α=1
P (Tα)e−βd(xi,Tα)

2. ∀j : P (Tj) = 1
n

∑n

i=1 P (Tj |xi)

Soft Clustering(T , P (T ), β)

Repeat until convergence:

1. Blahut-Arimoto(P (T ), β)

2. ∀j : Tj = Learn PST(x̄, w̄j)

Figure 5.3: Soft clustering at a given distortion level.

and P (Tj) is the proportion of data assigned to model j

P (Tj) =
1

n

n
∑

i=1

P (Tj |xi)

By minimizing the joint information between models and sequences we aim to find the segmenta-
tion which makes the least assumptions (or constraints) on the relationship between models and
sequences, while still maintaining the desired distortion level. As such it is also the most probable
assignment.

While we cannot write an analytical solution to Equation 5.2, we can employ a computation
procedure, known as the Blahut-Arimoto (BA) algorithm, that provably converges to the opti-
mal solution (Csiszar, 1974). Given some initial (prior) distribution P (Tj), the algorithm iterates
between two self consistent equations for estimating P (Tj |xi) and P (Tj). The constraint on the
maximally allowed distortion D is replaced by its Lagrange multiplier β in the Lagrangian of Equa-
tion 5.2. The two relate to each other through β = − dR

dD and since R(D) can be shown to be convex,
a one to one relation exists between values of the two, such that small values of β correspond to
high distortion levels, and vice versa (Cover and Thomas, 1991). The BA algorithm is given in
Figure 5.3(left), where we introduce an abbreviated notation P (T ) ≡ {P (T1), . . . , P (Tk)}.

We can now take advantage of the non-parametric PST training algorithm, defined in Section 5.2
to obtain an EM-like iterative loop. We fix the obtained segmentation and train a new set of
PST models, using the P (Tj |xi) values as weight vectors. The resulting procedure, shown in
Figure 5.3(right), is performing soft clustering of sequence symbols into k PST models, at a given
distortion level.

5.3.4 Annealing Main Loop

Once the soft clustering is defined for a prescribed distortion level, embedding it in a deterministic
annealing loop is straightforward. We begin by defining the phase through which new models will
be added to the clustering procedure, as in Figure 5.4. This we do by substituting each PST T in T
with two new PSTs. We create two exact copies of T and do random anti-symmetric perturbations
of the counts vectors in each node of the two copies (this corresponds to a perturbation of the
probability measures each of the copies induces on Σ+). We then distribute P (Tj) equally among
the two, and have them replace the original model.

At every distortion level, (corresponding to the given value of β) a limited number of PST
models K suffice to achieve D. When more than the required models are supplied, i.e. k > K,
some models become near-identical, while others are not used by the clustering solution, indicated
by P (Tj) = 0. The first phenomena is typical of DA procedures (see Rose, 1998). The latter
results from our combination of window based likelihood smoothing (Equation 5.1), which enforces
contiguous segmentation, together with the MDL governed PSTs (Figure 5.1). Models which do
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not do significantly better than other on some data segments, inevitably lose complexity, until they
degenerate and are out-performed by the others. We take advantage of this self regularization in
the main DA loop of the algorithm.

We are finally ready to outline the complete algorithm. We start with T including a single PST
T0 that is trained on the full sequence x̄ with w0(xi) = 1 for all i. We pick an initial low value of
β (corresponding to a high distortion value), split T and partition x̄ among the resulting models,
T1 and T2. Once clustering has converged we split T again and repeat. If a model is found to have
lost its data, it is eliminated. When the effective number of models stops increasing, we increase
β (decreasing the desired distortion level) and repeat the process. The pseudo-code and schematic
description of the resulting algorithm are given in Figure 5.5. As we shall next demonstrate, sets
of segments that are assigned with high probability to the same model over several values of β are
stable clusters that contain important information about the statistical structure of our sample.

Before proceeding to the applications part, we introduce a variant of the segmentation algorithm
which executes a single iteration of the Blahut-Arimoto algorithm between successive model re-
training. This results in the replacement of the procedures of Figure 5.3 with that of Figure 5.6(left).
The latter figure also holds a schematic drawing of how this affects the general behaviour of the
algorithm. The motivation for this variant is empirical. Our runs indicate that the altered algorithm
often converges to a superior solution. In the coming sections we will therefore resort to using
this variant. From a computational point of view it appears that it is beneficial to spend more
time on re-training models, while seeking for the optimal segmentation, rather than optimizing
every re-training instance, thus moving through a more constrained sub-space of possible PST
configurations.

5.4 Textual Calibration Tests

Before approaching the protein segmentation task, we analyze several synthetic data sets to calibrate
and examine our approach. Our synthetic data sets will be composed of alternating fragments from
five running texts in five different languages: English, German, Italian, French and Russian. We
pre-process the five original texts, by converting them into lower case accent-free Latin letters with
white space substituting all separators. For Russian, a commonly used phonetic transcript was
applied.

The first test set is constructed by taking 100 consecutive letters from each text in turn, re-

Split PSTs(T , P (T ))

Replace each Tj in T by two new models:

1. Start with two exact copies of Tj : Tj1 and Tj2

2. For each node s in Tj and for each σ ∈ Σ:

(a) Select {ζ = 1, ξ = 2} or {ζ = 2, ξ = 1}
with probability 1

2 / 1
2 .

(b) Perturb and normalize the counts vectors:

For Tjζ
: ws(σ) = (1 + γ) · ws(σ) (|γ| � 1)

For Tjξ
: ws(σ) = (1− γ) · ws(σ)

3. P (Tj1) = 1
2P (Tj), P (Tj2) = 1

2P (Tj)

Figure 5.4: The PST splitting procedure.
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Algorithm main part:

Initialization:

For all i, w0(xi) = 1

T0 = Learn PST(x̄, w̄0)

T = {T0}, P (T0) = 1

β = β0, kprev = 0

Annealing loop:

While |T | < n
2M+1

1. While |T | > kprev

(a) kprev = |T |

(b) Split PSTs(T , P (T ))

(c) Soft Clustering(T , P (T ),β)

(d) Remove all Tj s.t. P (Tj) = 0 from T .

2. Increase β

P(T j)

Tj

Split

P(T j|x i)

Tj

update

update
Refinement

Blahut−Arimoto

Soft Clustering

Annealing

β

Increase

retrain

Figure 5.5: The Markovian sequence segmentation algorithm.

peating this concatenation 300 times. Thus, the first 100 letters open the English text, the next
four segments, 100 letters each, open the other four texts, respectively. We then concatenate the
next 100 letters from the English text, etc. In linguistic terms this is a relatively high switching
rate, as 100 letters typically allow for two sentences per segment. The resulting interleaved text is
150,000 letters long. We made several independent runs of our algorithm, using a window size of 21
(M = 10 in Equation 5.1), which seemed to produce the best results for the language experiments.
In every run, after 2000−3000 accumulated innermost iterations of the non-BA soft clustering loop
(Figure 5.6) we obtained a clear-cut, correct segmentation of the text into segments corresponding
to the different languages. As Figure 5.7 shows, the segmentation boundaries are accurate up to
a few letters. Moreover, in all runs, subsequent steps that further split the five language models
resulted in starvation and subsequent removal of the five redundant models, resulting in the same,
stable segmentation.

In Figure 5.8 we show a temporal picture of a segmentation run, by plotting all P (Tj) values
after each iteration of the soft clustering procedure. We recall that P (Tj) is the relative amount
of data assigned to an individual model. Thus, at each call to Split PSTs, we get a discontinuity
point as a given P (Tj) ceases to exist, and is replaced by two models, each weighted at 1

2P (Tj).
When a model loses all data, the respective P (Tj) drops to zero. Such models are then removed.
It is interesting to note that in most runs linguistically similar languages (English and German,
French and Italian) tended to separate at later stages of the segmentation process. This observation
suggests that in addition to the segmentation one may also attempt to obtain a hierarchical structure
over the discovered data sources, as is obtained, for example, in El-Yaniv et al. (1998). Finally,
by comparing the BA and non-BA segmentation runs in Figure 5.8 we note the different typical
bifurcation shapes after model splitting between the two, and the fact that the non-BA solution
obtains model separation at lower levels of β.

To better understand the limitations of the method, we performed several more experiments in
this context.

First, we examined the location and size of the smoothing window in the definition of local
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Soft Clustering-NoBA(T , P (T ), β)

Repeat until convergence:

1. ∀i, j : P (Tj |xi) =
P (Tj)e

−βd(xi,Tj )

∑k

α=1
P (Tα)e−βd(xi,Tα)

2. ∀j : P (Tj) = 1
n

∑n
i=1 P (Tj |xi)

3. ∀j : Tj = Learn PST(x̄, w̄j)

Tj

Split

update

P(T j|x i) P(T j)

update

Tj

retrain

Refinement Annealing

β

Increase

Soft_Clustering−NoBA

Figure 5.6: Segmentation algorithm variant without the BA procedure.

distortion between sequence symbol and its modeling PST (Equation 5.1). By comparison, the
symmetric window was found to be preferable to non-symmetric ones. For example, averaging
over xi−2M . . . xi, caused both a decrease in the ability to detect quickly alternating sources, as
well as a skew in the point of transition between most likely models. As expected, the predicted
transition point moves in the opposite direction to the center of the smoothing window. The
magnitude of M was seen to also influence the performance of the algorithm. A large M with respect
to underlying segment size would diminish our ability to distinguish between quickly alternating
sources, although it does provide more confident local segmentation when P (Tj |xi) is compared
between the generating model and the others, during sequence weight redistribution. On the other
hand, very small values would result in very noisy segmentation, as well as occasional convergence
to inferior local minima. Averaging window size was thus deemed to be data driven, and was
targeted for a later automation effort.

In another experiment we searched for the model alternation rate beyond which the segmen-
tation algorithm no longer segments correctly. When keeping the total amount of data as above,
segmentation could be reliably achieved when sources alternated every 30 letters or so, as in Fig-
ure 5.9(a). On average this would mean less than one whole sentence in each segment. Segmentation
at this high alternation level, was however less stable, as two language models would on occasion
merge, and later split back. Completely stable segmentation was obtained at a segment length of
40. We also tried to minimize the total length of the data, while alternating every 100 letters as
before. In this case, accurate segmentation was obtained from a total length of 6,000 letters per
language, as in Figure 5.9(b), while stable segmentation appeared only when 8,000 letters or more
are supplied per language. This appears to be mainly the result of our MDL single model training
which would not allow complex models to evolve for smaller sample sizes. Finally, we examined the
benefits of using a variable memory approach to this problem. When all PST training is restricted
to suffixes of length one at most, segmentation can still be obtained in the original setting, as
Figure 5.9(c) attests. However, segment borders, as well as model confidence are inferior to those
using unrestricted PSTs (compare to Figure 5.7). When PST depth is further restricted to depth
zero (single root node), segmentation capability deteriorates dramatically. Figure 5.9(d) holds a
minimal segmentation, of only two very distinct languages, English and Russian, at an increased
segment size of 200. Thus, we conclude that the variable memory approach does play an important
role in segmentation, and may play a more significant role in segmenting related protein sequences,
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Figure 5.7: Multilingual text segmentation. (left) We plot −d(xi, Tj) for the first 500 letters of text,
for the five models in T = {TEnglish, TGerman, TItalian, TFrench, TRussian}, which are produced by a typical
run of the segmentation algorithm (here M = 10 and β = 0.6). The true segmentation of the data appears
above the x-axis. (right) A zoom in of the first transition point, where the x-axis corresponds to text letters
70−130. Note the correspondence between the transition of prediction dominance from TEnglish to TGerman

and the English-like beginning “be charakteristisch...” of the German segment.

as discussed in Section 3.3.2.

5.5 Protein Domain Signatures

The input to the segmentation algorithm is a group of unaligned sequences in which we search for
regions of one or more types of conserved statistics. The different training sets were constructed
using the Pfam (release 5.4, Bateman et al., 2002) and Swissprot (release 38, Boeckmann et al.,
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(c) PST depth limited to 1 (d) PST depth limited to 0

Figure 5.9: Factors influencing segmentation success. (a) An example of a successful segmentation at
minimal per segment size of 30. (b) Successful segmentation at alternation rate of 100 letters, and minimal
sample size of 60 segment per language. (c) Inferior segmentation obtained using only PSTs limited to depth
1 suffixes. (d) When PST depth is limited to root node only, even two distinct languages, alternating every
200 symbols can only be segmented at very low quality.

2003) databases. We briefly recall from Chapter 2 that Pfam contains various conserved sequence
domain families. In each Pfam family all members share a domain. An HMM detector is built for
that domain segment based on an MSA of a seed subset of family member domains. The HMM
is then verified to detect that domain in the remaining known family members. Multi domain
proteins therefore belong to as many Pfam families as there are different characterized domains
within them. In order to build realistic, more heterogeneous sets, we collected from Swissprot the
complete sequences of all chosen Pfam families. All members of each set thus contain a certain
domain. Some of them may also contain various other domains in different combinations. We also
experimented with sets which are the union of two or more Pfam families to examine the ability of
our algorithm to detect and resolve the different repeating sources.

As we saw above, given such a set of unaligned sequences our algorithm returns as output
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several PST models. The number of models returned is determined by the algorithm itself. In
practice two types of PSTs emerge for protein sequence data: Models that significantly outperform
others on relatively short regions along the different sequences (and generally do poorly on most
other regions). These we call detectors. The other type are models that perform averagely over
all sequence regions. These are noise (or baseline) models and we can discard them automatically.
As we shall next show, detector models often correspond to conserved domains, or parts of them,
while the noise models capture the existing statistical correlations in the unstructured regions of
different family members.

Three of the Pfam-based sets we ran experiments on will next be presented to demonstrate
the ability of the resulting models to pin-point the prevalent domain/s, simultaneously detect
others which appear less frequently in the data set, and even surpass supervised HMM detection
capabilities in certain cases. Several independent runs of the (stochastic) segmentation algorithm,
were carried out per family. For each family the different runs converged to the same stable
segmentation. Each PST detector we present is run over the complete segmented data set in order
to determine its nature. In the following we will present the segmentation of a single representative
protein sequence out of each explored set. The algorithm itself is implemented in C++. On a
Pentium III 600 MHz Linux machine clear segmentation was usually apparent within an hour or
two of run time.

5.5.1 The Pax Family

Pax proteins (reviewed in Stuart et al., 1994) are eukaryotic transcriptional regulators that play
critical roles in mammalian development and in oncogenesis. All of them contain a conserved
domain of 128 amino acids called the paired or paired box domain (named after the drosophila
paired gene which is a member of the family). Some contain an additional homeobox domain that
succeeds the paired domain. Pfam nomenclature names the paired domain “PAX”, after the Pax
protein which is a family member.

The Pax proteins show a relatively high degree of sequence conservation. We attempted to
segment a set of 116 unaligned, unannotated complete sequences of family members, as described
above. In Figure 5.10 we superimpose the prediction of all resulting PST detectors over a repre-
sentative family member. This Pax6 SS protein contains both the paired and homeobox domains.
Both are shown to have matching signatures. Furthermore, in this set the obtained signatures
exactly overlap the entire span of the two domains. Note that only half of the proteins contain the
homeobox domain and yet its signature is very clear.

The stable break-up of the paired domain signature into three separate specialized models in
Figure 5.10 merits further discussion. Through a literature search we discovered that crystallo-
graphic and biochemical studies have indicated that the paired domain is actually composed of two
sub-domains separated by a short linker (e.g., Stuart et al., 1994; Xu et al., 1999). This segmenta-
tion is evident from the crystal structures of two of the family members, drosophila paired protein
and the human Pax6 protein, whose 3D structures have been solved when bound to their DNA
target sequences. While the crystal structure of the paired protein-DNA complex indicated that
the N-terminal sub-domain is responsible for interactions with the DNA, in the Pax6-DNA complex
both the N-terminal and the C-terminal sub-domains bound the DNA through the major groove
by a helix-turn-helix motif and the linker contacted the DNA through the minor groove. Further
scrutiny of our algorithm revealed, however, that in its current formulation, the break up of the
paired box signature is a function of the window size parameter M of Equation 5.1. It appears
that as we drive our algorithm to increasingly harden the clustering of the segments, less conserved
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Figure 5.10: Unaligned domain detection and segmentation. We present the results of segmenting
an unaligned set of Paired/PAX domain sequences, half of which also contain the homeobox domain. We
superimpose the predictions of all four detector PSTs generated by the segmentation algorithm, and a
baseline model (dashed), against the sequence of the PAX6 SS protein. Above the x-axis we denote in Pfam
nomenclature the location of the experimentally verified paired box and homeobox domains. These are seen
to be in near perfect match with the high scoring sequence segments.

domains tend to break into succeeding segment models, of roughly equal length, proportional to
the magnitude of M .

5.5.2 DNA Topoisomerase II

Type II DNA topoisomerases (reviewed in Roca, 1995) are essential and highly conserved in all
living organisms. They catalyze the interconversion of topological isomers of DNA and are involved
in a number of mechanisms, such as supercoiling and relaxation, knotting and unknotting, and
catenation and decatenation. In prokaryotes the enzyme is represented by the Escherichia coli
gyrase, which is encoded by two genes, gyrase A and gyrase B. The enzyme is a tetramer composed
of two GyrA and two GyrB polypeptide chains. In eukaryotes the enzyme acts as a dimer, where
in each monomer two distinct domains are observed. The N-terminal domain is similar in sequence
to Gyrase B and the C-terminal domain is similar in sequence to GyraseA. We illustrated this
relationship in Figure 5.11(a). In Pfam 5.4 terminology GyrB and the N-terminal domain belong
to the “DNA topoisoII” family (which has been sub-divided in later Pfam releases), while GyrA
and the C-terminal domain belong to the “DNA topoisoIV” family1. In the remainder we term the
pairs GyrB/topoII and GyrA/topoIV, respectively.

For the analysis we used a group of 164 unaligned, unannotated sequences that included both eu-
karyotic topoisomerase II sequences and bacterial Gyrase A and B sequences. These were gathered
from the union of the DNA topoisoII and DNA topoisoIV Pfam 5.4 families. As we next show, our
algorithm successfully differentiates them into sub-classes. Figure 5.11(d) plots the segmentation
of a representative of the eukaryotic topoisomerase II sequences. We see that the PSTs model the

1The name should not be confused with the special type of topoisomerase II found in bacteria, that is also termed
topoisomerase IV, and plays a role in chromosome segregation.
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Figure 5.11: Detection of a fusion event in unaligned sequences. (a) The relationship between
prokaryotic and eukaryotic Type II DNA topoisomerases is depicted schematically. (adapted from Marcotte
et al., 1999) We see that a single gene in yeast codes for two domains which are homologous to those coded by
two separate genes in E. coli. (b),(c) Typical PST segmentation signatures for the Gyrase B and A domains,
respectively. (d) By comparison to the previous two figures, the signature of the eukaryotic Type II DNA
topoisomerase is shown to be composed of the two prokaryotic signatures, in the right order and placing.
Also note that the C-terminal signature of the Gyrase B protein is missing from its eukaryotic counter-part,
as is the conserved region it models.

85



Chapter 5

C-terminal part of the GyrB/topoII domain, and the N-terminal part of the GyrA/topoIV domain.
Figure 5.11(b) and (c) demonstrate the results for representatives of the bacterial Gyrase B and
Gyrase A proteins, respectively. As we denote above the graphs, the same two signatures are found
in all three sequences, at the appropriate locations. Interestingly, in Figure 5.11(b) in addition to
the signature of the GyrB/topoII domain another signature appears at the C-terminal region of
the sequence. This signature is compatible with a known conserved region at the C-terminus of
Gyrase B, that is involved in the interaction with the Gyrase A molecule. It also corresponds to
the Pfam “DNA gyraseB C” family.

The relationship between the E. coli proteins GyrA and GyrB and the yeast topoisomerase II of
Figure 5.11 provides a prototypical example of a fusion event of two proteins that form a complex
in one organism into one protein that carries a similar function in another organism. Such examples
have lead to the idea that identification of such similarities may suggest the relationship between
the first two proteins, either by physical interaction or by their involvement in a common pathway
(Marcotte et al., 1999; Enright et al., 1999). The computational scheme we present can be useful
in searching for these relationships.

5.5.3 The Glutathione S-Transferases

The glutathione S-transferases (GST) represent a major group of detoxification enzymes (reviewed
in Hayes and Pulford, 1995). There is evidence that the level of expression of GST is a crucial factor
in determining the sensitivity of cells to a broad spectrum of toxic chemicals. All eukaryotic species
possess multiple cytosolic GST isoenzymes, each of which displays distinct binding properties. A
large number of cytosolic GST isoenzymes have been purified from rat and human organs and,
on the basis of their sequences they have been clustered into five separate classes designated class
alpha, mu, pi, sigma, and theta GST. The hypothesis that these classes represent separate families
of GST is supported by the distinct structure of their genes and their chromosomal location. The
class terminology is deliberately global, attempting to include as many GSTs as possible. However,
it is possible that there are sub-classes that are specific to a given organism or a group of organisms.
In those sub-classes the proteins may share more than 90% sequence identity, but these relationships
are masked by their inclusion in the more global class. Also, the classification of a GST protein
with weak similarity to one of these classes is sometimes a difficult task. In particular the definition
of the sigma and theta classes is imprecise. Indeed the PRINTS database (Attwood et al., 2003)
of discriminating signatures, reviewed in Chapter 2, only the first three classes, alpha, pi, and mu
have been defined by distinct sequence signatures. For lack of sufficient similarity, Pfam models all
these sequences using a single GST domain HMM.

Our algorithm segmented 396 unaligned, unannotated Pfam family members into distinct signa-
ture groups: (1) A typical weak signature common to many GST proteins that contain no sub-class
annotation. (2) A sharp peak after the end of the GST domain appearing exactly in all 12 out
of 396 (3%) proteins where the elongation factor 1 gamma (EF1G) domain succeeds the GST
domain. Interestingly, as shown in Figure 5.12(a) the captured region corresponds mostly to the
linker region between the GST and EF1G domain, which upon inspection of the multiple alignment
between members is also seen to be relatively conserved. (3) A clear signature common to almost
all PRINTS annotated alpha and most pi GSTs, shown in Figure 5.12(b). (4) The theta and sigma
classes are abundant in non-vertebrates. As more and more of these proteins are identified it is
expected that additional classes will be defined. The first evidence for a separate sigma class was
obtained by sequence alignments of S-crystallins from mollusc lens. Although these refractory pro-
teins in the lens probably do not have a catalytic activity they show a degree of sequence similarity

86



Chapter 5

50 100 150 200 250 300 350

−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50
O04487

−
d
( 

x
i ,

 T
j )

Protein Sequence

GST EF1G 

20 40 60 80 100 120 140 160 180

−140

−130

−120

−110

−100

−90

−80

−70

−60

O00460

−
d
( 

x
i ,

 T
j )

Protein Sequence

GST 

(a) GST + EF1G signature (b) Joint α and π GST signature

20 40 60 80 100 120 140 160 180 200

−160

−140

−120

−100

−80

−60

−40
P18425

−
d
( 

x
i ,

 T
j )

Protein Sequence

GST 

20 40 60 80 100 120 140 160 180 200

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50
O46218

−
d

( 
x

i ,
 T

j )

Protein Sequence

GST 

(c) S-crystallin signature (d) Putative θ GST signature

Figure 5.12: Differentiating functional sub-types without alignment. We show four of the five
distinct signature patterns that arise when segmenting the GST domain sequences. Interestingly, the clear
EF1G signature of (a) appears in only about 3% of the set, and the putative theta signature of (d) is seen
to be composed of two detector models, each used by a different sub-class (b and c). These observations can
help us analyze the phylogenetic relations behind the divergent sub-types we see nowadays.
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Figure 5.13: Domain detection using automatically aligned sequences. We plot the clustalX conser-
vation score of the PAX6 SS protein against an MSA of all Pax proteins. While the predominant paired/PAX
domain is discerned, the homeobox domain (appearing in about half the sequences) is lost in the background
noise. Compare with Figure 5.10 where the same training set and plotted sequence are used.

to the GSTs that justifies their inclusion in this family and their classification as a separate class of
sigma (Buetler and Eaton, 1992). This class, defined in PRINTS as S-crystallin, was almost entirely
identified by the fourth distinct signature, shown in Figure 5.12(c) to be composed of prediction
peaks of two adjacent detector models. (5) Interestingly, the last distinct signature, is composed
of two detector models, one from each of the previous two signatures (alpha + pi and S-crystallin).
Most of these two dozens proteins come from insects, and of these most are annotated to belong to
the theta class. Note that many of the GSTs in insects are known to be only very distantly related
to the five mammalian classes. Our segmentation pinpoints, without alignment, conserved regions
shared by the differer classes. It does however fail to detect the mu class signature.

5.5.4 Comparative results

In order to evaluate our findings we have performed three unsupervised alignment driven exper-
iments using the same sets described above: An MSA was computed for each set using clustalX
(Linux version 1.81, Jeanmougin et al., 1998). We then let clustalX compare the level of conserva-
tion between individual sequences and the computed MSA profile in each set. Qualitatively these
graphs resemble ours, apart from the fact that they do not offer separation into distinct models,
which sometimes provides extra discerning power.

As expected this straightforward approach can be less powerful. The Pax alignment did not
clearly elucidate the homeobox domain existing in about half the sequences. As a result, when we
plot the graph comparing the same PAX6 SS protein we used in Figure 5.10 against the new MSA
in Figure 5.13, the homeobox signal is lost in the noise. For type II topoisomerases the picture
is slightly better. The Gyrase B C-terminus unit from Figure 5.11(b) can be discerned from the
main unit, but with a much lower peak. However, the clear sum of two signatures we obtained for
the eukaryotic sequences, as in Figure 5.11(d), is lost here. In the last and hardest case the MSA
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approach tells us nothing. All GST domain graphs look nearly identical precluding any possible
subdivision. And the 12 (out of 396) instances of the EF1G domain are completely lost at the
alignment phase.

5.5.5 Model Enhancements

In the three sets presented above, and others, our algorithm has achieved meaningful segmenta-
tion, pin-pointing whole or parts of conserved domains. These sets, however, are characterized by
relatively high conservation of family members. However, many domains that are less conserved
could not be detected using our method. To address this challenge we attempted to enhance our
modeling scheme. We briefly describe enhancements which have improved the behaviour of the
algorithm:

A fixed background model. As part of the initialization, the algorithm trains an additional order-
1 model of the entire data set. Then, during the main loop, this model participates in
data re-partitioning (steps 1,2 in Figure 5.6) but it is not re-trained (step 3 there). This fixed
background model tends to repress the appearance of other noise models, and typically causes
the algorithm to converge earlier on.

Wildcard PST nodes. Consider an inner node of a PST, labeled s. Its main use is in predicting
contexts which extend beyond its depth, but are not modeled in the tree. In the notation of
Section 5.2, s ∈ T , but its one letter extension ∗s 6∈ T . Instead of predicting the next letter σ
using Ps(σ) ≡ ws(σ)

w(s) , we model it using P∗s(σ) ≡ w∗s(σ)
w(∗s) , where w∗s = ws(σ)−Σσ′s∈T wσ′s(σ),

and w(∗s) is defined analogously. Thus, we predict the next symbol based not on the entire
statistics of node s, but only on those contexts which are not refined by son nodes, and thus
predicted elsewhere. By revising the MDL expressions of Section 5.2 accordingly, we obtain
more precise stochastic modeling of the sequence segments.

Bi-directional modeling. Increasing space and time demands by a factor of two, we replace every
PST with a pair. One models the sequences in the N- to C-terminal direction, as before,
and the other models them in the reverse direction. During data partitioning, the distortion
between such a pair and a sequence symbol (Equation 5.1) is now a cumulative sum of the two
respective distortions. During model re-training they use the same resulting weight vector. As
PST modeling focuses on prediction given the sequence past, bi-directional modeling allows
us to capture more sequence correlations at a low computational cost.

While improving the stability and performance of our algorithm, room for improvement remain,
especially for highly divergent domain families. We discuss further directions for enhancement in
the next section.

5.6 Discussion

The sequence segmentation algorithm we describe and evaluate in this chapter is a combination
of several different information theoretic ideas and principles, naturally combined into one new
coherent procedure. The core algorithm, the construction of Prediction Suffix Trees, is essentially
a source coding loss-less compression method. It approximates a complex stochastic sequence
by a probabilistic automaton, or a Markov model with variable memory length. The power of
this procedure, as demonstrated on both natural texts and on protein sequences, is in its ability
to capture short strings (suffixes) that are significant predictors, and thus good features, for the
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statistical source. We combined the PST construction with another information theoretic idea,
the MDL principle, to obtain a more efficient estimation of the PST, compared with its original
learning algorithm.

Our second key idea is to embed the PST construction in a lossy compression framework by
adopting the rate-distortion theory into a learning procedure. Here we treat the PST as a model
of a single statistical source and use the rate distortion framework (i.e., the Blahut-Arimoto al-
gorithm) to partition the sequences between several such models in an optimal way. By doing so
we specifically obtain a more expressive statistical model, as mixtures of short memory, ergodic
Markov models lay outside of this class, and can be captured only by much deeper Markov models.
This is a clear advantage of our current approach over mixtures of HMMs (as in Fine et al., 1998)
since mixtures of HMMs are but HMMs with constrained state topology.

The analogy with rate-distortion theory enables us to take advantage of the trade-off between
compression (rate) and distortion, and use the Lagrange multiplier β, required to implement this
trade-off, as a resolution parameter. The deterministic annealing framework follows naturally in this
formulation and provides us with a simple way to obtain segmentation of very complex sequences,
such as protein sequences.

From a biological perspective the method has several advantages: It is fully automated; it does
not require or attempt an MSA of the input sequences, which may very well not be amenable to a
particular linear ordering; it handles heterogeneous groups well and locates domains appearing only
a few times in the data; by nature it is not confused by different module orderings within the input
sequences; it appears to seldom generate false positives; and it may even surpass HMM clustering
in instances of very similar separation to sub-types. However, as we saw, it is hard to separate and
segment highly similar statistical sources, domains with few occurrences in the set or those which
are very short, or very divergent. Rather than compare our algorithm to alignment-based models,
it would be interesting to use it in conjuncture with such methods. The segmentation can first be
applied to separate heterogeneous groups of proteins into groups sharing similarities. Those groups
can then be profiled by HMMs or similar tools, using our signatures as guides to the alignment and
domain boundaries.

Algorithmically, several natural extensions of our ideas are possible. We may attempt to replace
the window parameter M , which is currently calibrated manually, with an explicit HMM of PSTs
framework, where transitions between the different PST models are estimated from the data. One
may replace the PST with even more efficient loss-less coding schemes, such as the Context-Tree-
Weighting algorithm (Willems et al., 1995). This powerful method trades the MDL principle for a
Bayesian formulation, essentially averaging efficiently over all possible PSTs for a given sequence.
The disadvantages are the much larger data structures required, and the absence of the clear
features that emerge from the VMM model. Instead of enhancing our generative modeling ability
we may benefit by replacing these with discriminative ones, aimed not so much at capturing the
statistical richness in each source but rather at differentiating between them. This approach will
be explored in the next chapter.

Algorithmic optimization, similar to that performed in Chapter 4 for a single model, may allow
us to consider running the tool on much larger sets, such as whole proteomes, or even the entire set
of known proteins. Currently, scaling of the convergence run time with data set size prohibits these
experiments. From a theoretical point of view, a proof of convergence to a stable segmentation,
is still missing. In fact, the soft clustering procedure sometimes does enter oscillations around
the point of convergence, when small amounts of data pass back and forth between two or more
models. In itself, this situation is easy to automatically detect and resolve. Perhaps it can be
resolved algorithmically in a manner that facilitates a proof of convergence.
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This chapter is based on an extended abstract (Seldin et al., 2001) which was presented at
ICML 2001, and was later developed to a journal version (Bejerano et al., 2001) and presented at
the In Silico Biology 2001 conference. This work was a co-winner of the best poster award at AIBS
2002.
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Chapter 6
Discriminative Markovian Protein Analysis

Throughout the previous chapters we have used the probabilistic suffix tree as a generative model,
aiming to capture as many statistical features of the underlying source as possible. This chapter
introduces discriminative variable memory modeling, which focuses only on source discriminating
features. This novel approach is shown to obtain more compact and accurate models which pinpoint
protein residues of potential functional significance.

6.1 Introduction

Feature selection is one of the fundamental problems in pattern recognition and machine learning.
In this approach, one wishes to sort all possible features using some predefined criteria and select
only those that are most appropriate for the task at hand. It thus may be possible to significantly
reduce model dimensionality without impeding the performance of the learning algorithm. In some
cases one may even gain in generalization power by filtering irrelevant features (cf. Almuallim and
Dietterich, 1991). The need for a good feature selection technique also stems from the practical
concern that estimating the joint distribution between the different classes and the feature vectors
when either the dimensionality of the feature space or the number of classes is very large, requires
unrealistically large training sets. Indeed, increasing the number of features while keeping the
number of samples fixed can actually lead to a decrease in the accuracy of the classifier (Hughes,
1968; Baum and Haussler, 1989).

In this thesis we explore the power of variable memory modeling (VMM) in the context of protein
sequence analysis. When modeling a single protein family using a probabilistic suffix tree (PST), in
Chapter 3, our main concerns in terms of feature selection were the frequency of the feature under
consideration in the training set, and its predictive novelty with respect to less complex features
which may take its place (shorter suffixes). In Chapter 5, these two criteria were accounted for
simultaneously using the minimum description length principle. However, in both cases our use of
the PST model was for generative purposes. Model training was aimed at producing probabilistic
models which generate training set-like sequences with high probability. In particular, we aimed at
collecting all significant features of a class of short term context dependencies from the training set.
The ultimate goal of classification, segmentation or discrimination was achieved based on generative
PST predictions. It was never explicitly taken into account during model growing step.

As reviewed in Section 2.4, generative modeling of sequences is often not sensitive enough to
differentiate between protein sub-families. This is due to the high sequence similarities between all
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members of a given family, and the fact that among all residue variations between members only
specific residue changes confer the sought functionality variation.

Goal. Given a set of unaligned sequences, labeled as belonging to different families or sub-families
of proteins, devise a sensitive classification scheme of novel sequences into the given sub-families,
which will also highlight highly discriminating residues, of potential functional importance.

In this chapter we address this challenge by defining a novel discriminative framework for
PST modeling. First, we extend the generative PST modeling technique to handle several sources
simultaneously. Next, we prune from the resulting model all features which have low discriminating
power between the different classes. Rather than obtaining several separate PSTs focusing on
generative modeling of highly similar sources, we obtain a much smaller combined model which
focuses on detection of discriminating features between the different classes. We term this approach
discriminative variable memory modeling (DVMM).

Our feature selection, or pruning scheme is based on maximizing conditional mutual in-
formation. More precisely, for any subsequence s we estimate the information between the next
symbol in the sequence and each statistical source c ∈ C, given that subsequence, or suffix s.
We use this estimate as a new measure for pruning less discriminative features out of the model.
This yields a criterion which is very different from the one used by the generative VMM model
of Chapter 3-5. In particular, many features may be important for good modeling of each source
independently although they provide minor discrimination power. These features are pruned in
the DVMM framework, resulting in a much more compact model while attaining high classification
accuracy. We further suggest a natural sorting of the features retained in the DVMM model. This
allows an examination of the most discriminating features, which may help us gain insight into the
nature of the grouping.

6.2 Feature Selection

The use of mutual information (MI) for feature selection is well established in the machine learning
literature, although it is usually suggested there in the context of deterministic rather than stochas-
tic modeling. The original idea may be traced back to Lewis (1962). The approach is motivated
by the fact that when the a-priory class uncertainty P (C) is given, maximization of the mutual
information I(C;X) is equivalent to the minimization of the conditional entropy H(C|X). This in
turn links mutual information maximization and the decrease in classification error Perr, through
the following two inequalities (e.g., Goodman and Smyth, 1988)

H (Perr) + Perr log (C − 1) ≥ H (C|X) ≥ 2Perr (6.1)

where H (·) = −
∑

P (·) log P (·) and H (·|·) = −
∑

P (·, ·) log P (·|·) are the entropy and the condi-
tional entropy, respectively.

Since then, a number of methods have been posed, differing essentially in their method of ap-
proximating the joint and marginal distributions, and their direct usage of the mutual information
measure (cf. Battiti, 1994; Barrows and Sciortino, 1996; Yang and Moody, 1999). One of the diffi-
culties in applying MI based feature selection methods, is the fact that evaluating the MI measure
involves integrating over a dense set, which leads to a computational overload. To circumvent that,
Torkkola and Campbell (2000) have recently suggested to perform feature transformation (rather
than feature selection) to a lower dimension space in which the training and analysis of the data is
more feasible. Their method is designed to find a linear transformation in the feature space that

93



Chapter 6

will maximize the mutual information between the transformed data and their class labels, and
the reduction in computational load is achieved by the use of Renyi’s entropy based definition of
mutual information (Cover and Thomas, 1991) which is much more easy to evaluate.

Out of numerous feature selection techniques found in the literature, we also point out the work
of Della Pietra et al. (1997) who devised a feature selection (or rather, induction) mechanism to
build n-grams of varying lengths, and the “U-Tree” of McCallum (1997) which builds PSTs based
on the ability to predict the future discounted reward in the context of reinforcement learning.

Another popular approach in language modeling is the use of pruning as a mean for parameter
selection from a higher-order n-gram backoff model. The backoff model recursive rule (Chen and
Goodman, 1998) represents n-gram conditional probabilities P (wn|w1 . . . wn−1) using (n− 1)-gram
conditional probabilities multiplied by a backoff weight, α(w1 . . . wn−1), associated with the full
history. Thus, P (wn|w1 . . . wn−1) = α(w1 . . . wn−1)P (wn|w2 . . . wn−1), where α is selected such
that

∑

P (wn|w1 . . . wn−1) = 1. One successful pruning criterion, suggested by Stolcke (1998),
minimizes the divergence (measured using relative entropy) between the distributions embodied by
the original and the pruned models. By relating relative entropy to the relative change in training set
perplexity, or average branching factor of the language model, a simple pruning criterion is devised,
which removes from the model all n-grams that change perplexity by less than a threshold. Stolcke
(1998) shows that in practice this criterion yields a significant reduction in model size without
increasing classification error. More recently, Kermorvant and Dupont (2002) have used a different
backoff pruning criterion to obtain models which are smaller than their equivalent generative PSTs
and as accurate.

A selection criterion, similar to the one we propose here, was suggested by Goodman and
Smyth (1988) for decision tree design. Their approach chooses the highest scoring feature at any
node in the tree, conditioned on the features previously chosen, and the outcome of evaluating
those features. Thus, they suggested a top-down algorithm based on greedy selection of the most
informative features. Their algorithm is equivalent to the Shannon-Fano prefix coding (Cover and
Thomas, 1991), and can also be related to communication problems in noisy channels with side
information. For feature selection, Goodman and Smyth (1988) noted that with the assumption
that all features are known a-priori, the decision tree design algorithm will choose the most relevant
features for the classification task, and ignore irrelevant ones. Thus, the tree itself yields valuable
information on the relative importance of the various features.

A related use of MI for stochastic modeling is the maximal mutual information (MMI) approach
for multi-class model training. This is a discriminative training approach attributed to Bahl et al.
(1986), designed to directly approximate the posterior probability distribution, in contrast to the
indirect approach, via Bayes’ formula, and maximum likelihood (ML) training. The MMI method
was applied successfully to HMM training in speech applications (e.g., Normandin et al., 1994;
Woodland and Povey, 2000). However, MMI training is significantly more expensive than ML
training. Unlike ML training, in this approach all models affect the training of every single model
through the denominator. In fact this is but one reason why the MMI method is considered to be
more complex. Another reason is that there are no known easy re-estimation formulas (as in ML).
Thus one needs to resort to general purpose optimization techniques.

Our approach stems from a similar motivation but it simplifies matters: we begin with a
simultaneous ML training for all classes and then select features that maximize the discriminative
objective function. While we do not directly maximize the mutual information, we provide a
practical approximation which is far less computationally demanding.
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6.3 Theory

Consider the classification problem to a set of categories C = {c1, c2, . . . , c|C|}. The training data
consists of a set of labeled examples for each class. Each sample is a sequence of symbols over some
alphabet Σ. A Bayesian learning framework trains generative models to produce good estimates
of class conditioned probabilities. Upon receiving a new test sample d, the generative models are
employed to yield a maximum aposteriori decision rule:

max
c∈C

P (c|d) ∝ max
c∈C

P (d|c)P (c), d ∈ Σ∗

Thus, good estimates of P (D|C) are essential for accurate classification.

6.3.1 The Generative Approach

Let d = σ1σ2, . . . σ|d|, σi ∈ Σ , and let si ∈ Σi−1 denote the subsequence of symbols preceding σi,
then

P (d|c) = Π
|d|
i=1P (σi|σ1σ2 . . . σi−1, c) = Π

|d|
i=1P (σi|si, c) (6.2)

Denoting by suff(si) the longest suffix of si, we recall from Section 3.1 that if P (σ|si) = P (σ|suff(si)),
for every σ ∈ Σ, then predicting the next symbol using si is equivalent to a prediction using the
shorter context given by suff(si). Thus, in this case it is clear that keeping only suff(si) in the
model should suffice for the prediction.

The PST training algorithm of Figure 3.2 (page 39) aims at building a model which will hold
only a minimal set of relevant suffixes. To this end, a PST T̂ is built in two steps: First, only
suffixes s ∈ Σ∗ for which the empirical probability in the training data, P̂ (s), is non-negligible, are
kept in the model. Thus, rare suffixes are ignored. Next, all suffixes that are not informative for
predicting the next symbol are pruned out of the model. Specifically, this is done by thresholding
r ≡ P (σ|s)

P (σ|suff(s))
. If r ≈ 1 for all σ ∈ Σ, then predicting the next symbol using suff(s) is nearly

identical to using s. In such cases s will be pruned out of the model.
The PST algorithm is designed to statistically approximate a single source. A straightforward

extension to handle multiclass categorization tasks would build a separate PST for each class,
based solely on its own data, and would classify a new example to the model with the highest
likelihood score. This so called one-against-all approach, was used in Chapter 3. Motivated by a
generative goal, this approach disregards the possible similarities and dissimilarities between the
different categories. Each model aims at best approximating its assigned source. However, in a
discriminative framework these interactions may be exploited to our benefit.

6.3.2 Multiclass Discriminative PST

Assume, for example, that for some suffix s and every symbol σ ∈ Σ, P̂ (σ|s, c) = P̂ (σ|s) ∀c ∈ C,
i.e., the symbols and the categories are independent given s. Since we are now only interested in the
relative magnitude of the posteriors P̂ (c|s), these terms may as well be neglected. In other words,
preserving s in the model will yield no contribution to the classification task, since this suffix has
no discrimination power with respect to the given categories.

We turn to generalize and quantify this intuition. In general, two random variables are inde-
pendent iff the mutual information between them is zero (cf. Cover and Thomas, 1991). For every
s ∈ Σ∗ we consider the following (local) conditional mutual information,

Is ≡ I(Σ;C|s) =
∑

c∈C

P̂ (c|s)
∑

σ∈Σ

P̂ (σ|c, s) log
P̂ (σ|c, s)

P̂ (σ|s)
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First step - tree growing:

1. Initialize T̂ to include the empty suffix e, P̂ (e) = 1.

2. For l = 1 . . . L

(a) For every sl ∈ Σl, where sl = σ1σ2 . . . σl,
estimate P̂ (sl|c) = Πl

i=1P̂ (σi|σ1 . . . σi−1, c).

i. If P̂ (sl|c) ≥ ε1, for some c ∈ C, add sl into T̂ .

Second step - tree pruning:

1. Estimate for all s ∈ T̂ ,

Is =
∑

c∈C P̂ (c|s)
∑

σ∈Σ P̂ (σ|s, c) log( P̂ (σ|s,c)

P̂ (σ|s)
).

2. For l = L . . . 1

(a) Define T̂l ≡ Σl ∩ T̂

(b) For every sl ∈ T̂l,

i. Let T̂sl
be the subtree spanned by sl

ii. Define Īsl
= max

s′∈T̂sl

Is′

iii. If Īsl
− Isuff(sl) ≤ ε2, prune sl.

Figure 6.1: The discriminative PST training algorithm.

where P̂ (c|s) is estimated using Bayes formula, P̂ (c|s) = P̂ (s|c)P̂ (c)/P̂ (s); the prior P̂ (c) can be
estimated by the relative number of training examples labeled with category c, or from domain
knowledge; and P̂ (s) =

∑

c∈C P̂ (c)P̂ (s|c). If Is = 0, s can surely be pruned, as above. However,
we may define a stronger pruning criterion, which considers also the suffix of s. Specifically, if
Is − Isuff(s) ≤ ε2, where ε2 is some threshold, one may prune s and settle for the shorter memory

suff(s). In other words, this criterion implies that suff(s) effectively induces more dependency
between Σ and C than its extension s. Thus, preserving suff(s) in the model should suffice for the
classification task. While adding conditioning in general reduces entropy, and therefore increases
MI, the individual terms of the MI summation may still exhibit an opposite relation (cf. Cover and
Thomas, 1991).

Finally, note that as in the case of the original PST discussed in Section 4.2.2, the pruning
criterion defined above is non-monotone. Thus, it is possible to get Is1 > Is2 < Is3 for s3 =
suff(s2) = suff(suff(s1)). In this case we may be tempted to prune the suffix s2 along with its child,
s1, despite the fact that Is1 > Is3. To avoid that, we define the pruning criterion more carefully.
We denote by T̂s the sub-tree spanned by s, i.e., all nodes in T̂s that correspond to sub-sequences
with the same suffix, s. We can now calculate Īs = maxs′∈T̂s

Is′ , and define the pruning criterion

using Īs − Isuff(s) ≤ ε2. Therefore, we prune s (along with all its descendants), only if there is

no descendant of s (including s itself) that induces more information (up to ε2) between Σ and
C, compared to suff(s), the parent of s. The pseudo-code of the resulting algorithm is given in
Figure 6.1.

Given a novel sequence d, prediction scores are obtained for each class c from Equation 6.2,
using the longest suffixes remaining after the pruning phase.
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6.3.3 Sorting the Discriminative Features

As we shall show below, the above procedure yields a rather compact discriminative model between
several statistical sources. Naturally not all its features have the same discriminative power. We
denote the information content of a feature by

Iσ|s ≡
∑

c∈C

P̂ (c|s)P̂ (σ|s, c) log(
P̂ (σ|s, c)

P̂ (σ|s)
)

Note that Is =
∑

σ∈Σ Iσ|s, thus Iσ|s is simply the contribution of σ to Is. If P̂ (σ|s,C) ≈ P̂ (σ|s),
meaning σ and C are almost independent given s, then Iσ|s will be relatively small, and vice versa.

This criterion can be applied to sort all the DVMM features. Still, it might be that Iσ1|s1
=

Iσ2|s2
, while P̂ (s1)� P̂ (s2). Clearly in this case one should prefer the first feature, {s1 · σ1}, since

the probability to encounter it is higher. Therefore, we should balance between Iσ|s and P̂ (s) when

sorting. Specifically, we score each feature by multiplying the two factors P̂ (s)Iσ|s, and sorting the
resulting scores in decreasing order.

The pruning and sorting schemes above are based on local conditional mutual information values.
Let us review the process from a global standpoint. The global conditional mutual information is
given by (e.g. Cover and Thomas, 1991)

I(Σ;C|S) =
∑

s∈Σ∗

P̂ (s)I(Σ;C|s) =
∑

s∈Σ∗

P̂ (s)Is =
∑

s∈Σ∗

∑

σ∈Σ

P̂ (s)Iσ|s

In the DVMM training algorithm (Figure 6.1) we first neglect all suffixes with a relatively small
prior P̂ (s). Then we prune all suffixes s for which Īs is small with respect to Isuff(s). Finally,
we sort all remaining features by their contribution to the global conditional mutual information,
given by P̂ (s)Iσ|s. Thus, we aim for a compact model that still strives to maximize I(Σ;C|S).

Expressing the conditional mutual information as the difference between two conditional en-
tropies, I (Σ;C|S) = H(C|S) − H(C|S,Σ), we see that maximizing I(Σ;C|S) is equivalent to
minimizing H(C|Σ, S). In other words, our procedure effectively tries to minimize the entropy, i.e.,
the uncertainty, over the category identity C given the new symbol Σ and the suffix S, which in
turn decreases the classification error (Equation 6.1).

6.4 Results

To allow an evaluation of our method we present a comparative analysis over several representative
data sets.

6.4.1 Experimental Design

For every dataset we will compare the DVMM framework with two different, albeit related, algo-
rithms. A natural comparison is of course with the original generative VMM (GVMM) modeling
approach (Section 6.3.1). We build |C| different generative models, one per class. A new example
is then classified into the most probable class using these models.

We further compared our results to A. Stolcke’s perplexity pruning SRILM language modeling
toolkit (Stolcke, 2002, discussed in Section 6.2). Here, again, |C| generative models are trained and
classification is to the most probable class. Since the SRILM toolkit is limited to hexagrams, we
bounded the maximal depth of the PSTs (for both DVMM and GVMM) to the equivalent suffix
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length of five. For all three models, in the first step of ignoring small P̂ (s), we neglected all suffixes
appearing infrequently in the training sequences. In principle, these two parameters can be fine
tuned for a specific data set using standard methods, such as cross validation.

For pruning purposes we vary the analogous local decision threshold parameter in all three
methods to obtain different model sizes. These are ε2, r, and the perplexity threshold for DVMM,
GVMM and SRILM respectively. In order to compute model sizes we sum the number of class
specific features (s · σ combinations) in each model. For example, for the DVMM this will be the
number of retained nodes multiplied by |Σ||C|.

Finally, there is the issue of smoothing zero probabilities. Quite a few smoothing techniques
exist, some widely used by language modeling researchers (see Chen and Goodman, 1998 for a
survey). Most of these incorporate two basic ideas: Modifying the true counts of the n-grams to
pseudo counts (which estimate expected rather than observed counts), and interpolating higher-
order with lower-order n-gram models to compensate for under-sampling. For SRILM we use
absolute-discounting (see Chen and Goodman, 1998). The GVMM uses proportional smoothing
(Figure 3.2). For the DVMM, we follow Krichevsky and Trofimov (1981) as in Chapter 5, and
add a pseudo count of 0.5 to each possible suffix-symbol combination. We note that in the protein
realm (as well as in the textual example we give below) the alphabet size is fairly small, below
thirty symbols. Arguably, this implies that sophisticated smoothing is less needed here, compared
to large vocabularies of up to 105 symbols (words).

6.4.2 Textual Calibration Test

We begin by examining the behaviour of the DVMM algorithm in a standard text classification
task. In this experiment we set Σ to be the set of characters present in the documents. Our pre-
processing included lowering upper case characters and ignoring all non alpha-numeric characters.
Obviously, this representation ignores the special role of the blank character as a separator between
the different words. On the other hand, it seems more realistic in light of our ultimate protein
analysis goal, where no clear parsing is apparent.

For data set we chose the Reuters-21578 collection, which is a widely used categorization bench-
mark in the text mining community.1 This data set contains short items which appeared on the
Reuters newswire in 1987. Item length range is comparable to that of individual protein sequences.
Each of these items is indexed for topic, location and additional indices. For comparison purposes
we chose to focus on the modified Apte (ModApte) sub-set of the database. From it we chose all
items relating to the ten most frequent topic categories, resulting in a training set of 7194 documents
and a test set of 2788 documents. We note that about 9% of these documents are multi-labeled
while our implementation induces uni-labeled classification (where each document is classified only
to its most probable class).

We randomly chose half of the sequences as the training set and used the other half as test set.
This process was repeated ten times, using different splits. In each iteration we used the training
set to build three types of models for the ten topics, and then used these to classify the test set
items into the most probable topic for each model type. Reported results are an average over these
ten runs. In all runs, for all three models, we neglected all suffixes appearing less than 50 times in
the training sequences.

To compare our text classification results to those in the text mining literature we introduce
several measures of classification success, based on the terminology introduced in Section 2.2.1
(page 12). Precision is defined as the number of items correctly assigned to a class divided by

1The Reuters-21578 collection is freely available through the UCI KDD repository at http://kdd.ics.uci.edu/.
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Figure 6.2: Classification accuracy comparison on a textual data set. The micro-averaged F1
statistic, combining recall and precision scores, is plotted against model size, measured in number of class
specific features. All three methods are shown to ultimately achieve similar performance, with the DVMM
performing slightly better. However, the DVMM performs much better when model size is limited. Interest-
ingly, both generative models show an intermediate regime where model size increase results in classification
decrease.

the total number of items assigned to it, or TP
TP+FP (see Figure 2.2). Recall is a synonym to

the sensitivity measure we have used in previous chapters, and is defined as the number of items
correctly assigned to a class divided by the total number of items in that class, or TP

TP+FN . When
measuring multi-classification success each of these two measures can be macro or micro-averaged.
A macro average computes the statistic for each category separately and then takes an (unweighted)
average over categorical results. A micro average computes the value of the statistic over all
documents. Obviously we wish to maximize both the recall and precision of our algorithm. These
goals can be combined by defining the F1 statistic as the harmonic average between recall r and
precision p, or 2pr

p+r . This statistic always ranges between zero and one, the latter being the optimal
score.

In Figure 6.2 we present the micro-averaged F1 results for different model sizes for the three
algorithms. The DVMM results are consistently comparable or superior to the other algorithms.
The two generative modeling approaches are shown to suffer a decrease in performance at inter-
mediate model sizes, probably due to modeling features which are common to all classes, reflecting
English language statistics rather than class specific ones.

At its extreme, minimally pruned model, the micro-averaged precision and recall of the DVMM
are 95% and 87%, respectively. This difference is to be expected as we are unilabeling a multi-
labeled set, lowering our recall potential. Another way of combining these two results interpolates a
break even point at which the two measures would be equal. In our case the break-even performance
is at least 87% (probably higher). We compare these results with the break-even performance re-
ported by Dumais et al. (1998) for the same task. In that work the authors compared five different
classification algorithms: FindSim, naive Bayes, Bayes nets, decision trees and support vector ma-
chines (SVM). The (weighted) averaged performance of the first four were 74.3%, 84.8% 86.2%
and 88.6%, respectively. The DVMM is thus superior or comparable to each of these. The only
algorithm which outperformed the DVMM was the SVM with averaged performance of 92%. How-
ever, these results are even more encouraging, as all of the above algorithms were used with the
words representation (i.e., every word is a symbol in the now much expanded alphabet), while the
DVMM was using the low level unparsed character representation.
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class protein family name #seq.

c1 Fungal lignin peroxidase 29

c2 Animal haem peroxidase 33

c3 Plant ascorbate peroxidase 26

c4 Bacterial haem catalase/peroxidase 30

c5 Secretory plant peroxidase 102
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Figure 6.3: Classification accuracy comparison for the Peroxidase Superfamily. (left) The list of
five peroxidase families used in this test, and number of sequences in each. (right) Classification accuracy is
plotted against model size. All three algorithms are shown to obtain near optimal accuracy, with the DVMM
performing consistently best per number of features.

6.4.3 Protein Classification

Out of the discriminative methods discussed in Section 2.4, we have chosen to compare our results to
those of the Prints database (Attwood et al., 2003). We briefly recall that this established database
is a collection of protein family fingerprints. Each family is matched with a fingerprint of one or
more short profiles which have been iteratively refined using database scanning to maximize their
discrimination power in a semi-automatic procedure involving human supervision. This method
does not rely on phylogenetic information, and while it does utilize multiple alignment, it does so
primarily to ease the manual curation work by suggesting potential regions of conservation. The
resulting short profiles used for prediction are akin to the richer, yet positionless Markovian suffixes
we use.

In terms of experimental design we will continue to report the average ten-fold cross validation
runs. In screening infrequent suffixes we shall now ignore all those appearing twice or less. For
performance measurement, it is easy to verify that for a uni-labeled dataset and a uni-labeled
classification scheme, the micro-averaged precision and recall are equivalent, and hence equal to
the F1 measure. Therefore, we will compute only micro-averaged precision, and simply term it
accuracy.

The Peroxidase Superfamily

Peroxidases are Haem-containing enzymes that use hydrogen peroxide as the electron acceptor to
catalyze a number of oxidative reactions. Five related protein families, all members of the Haem
peroxidase super-family, were taken from the Prints database (version 29.0). Figure 6.3 holds
both the protein family names and sizes and the classification accuracy of the three models. In
this test, all algorithms are seen to achieve perfect, or near perfect classification using minimally
pruned models. However, for more intensive pruning (and hence, smaller model size), the DVMM
consistently outperforms the two generative algorithms. The PST model is again seen to display
non-monotonic behaviour, and requires more features than the other two methods to obtain optimal
accuracy.

We turn to examine the best discriminating model features. To do that we run the DVMM
training algorithm once with all available data, and sort the obtained features as advocated in

100



Chapter 6

class feature P̂ (σ|s, c) P̂ (s|c) seq-corr. fing-corr.

c1 ARDS|R 0.65 0.0019 62% 62%

c3 GLLQ|L 0.64 0.0029 73% 73%

c5 ARDS|V 0.66 0.0009 26% 0%

c5 GLLQ|S 0.38 0.0006 11% 11%

c3 IVAL|S 0.68 0.0035 88% 88%

c5 GLLQ|T 0.29 0.0006 8% 8%

c5 IVAL|A 0.28 0.0002 4% 4%

c4 PWWP|A 0.59 0.0008 64% 64%

c4 ASAS|T 0.40 0.0005 20% 20%

c2 FSNL|S 0.49 0.0004 30% 0%

Table 6.1: Peroxidase superfamily best discriminating features. The ten best DVMM features of
length four are shown, top down from best. For each we show the class where the feature probability is
maximal (see Figure 6.3 for class names), as well as the feature probability itself in that class, P̂ (σ|s, c). For
example, R follows ARDS in 62% of the fungal lignin peroxidases. In the other categories, P̂ (σ|s, c′) was usually
close to zero, and never exceeded 0.1. We also show the probability of observing suffix s in the maximizing
class. The next column gives the percentage of sequences in the maximizing class that contain this feature.
The last column compares the percentage of sequences in this class for which this feature appears in the
Prints chosen family fingerprint consensus sequence. For example the feature ARDS|R is contained in a motif
of the first family. It appears in this motif for 62% of the proteins assigned to it. In this table all features
either came from a Prints motif or from elsewhere in the protein sequences, explaining the all or nothing
correspondence between the last two columns.

Section 6.3.3. In Table 6.1 we present the top ten features with respect to all suffixes of length
four. Eight of them coincide with the fingerprint chosen semi-manually by the Prints database
to represent the respective class. The other two short motifs which have no match in the Prints
database are however good features as they appear in no other class but their respective one. Such
features can suggest improvements over obtained Prints fingerprints, to try and improve model
recall or precision. The features we highlight, can in principle also draw attention to conserved
motifs, of possible biological importance, which a multiple alignment program or a human curator
may have failed to notice. Notice also that the first seven entries in Table 6.1 share but three
different suffixes between them, where for each such suffix the next symbol separates between two
different classes (e.g., R, V separate ARDS into classes 1 and 5 respectively. Neither appears in any
of the other classes). This allows to highlight polymorphisms which are family specific and thus of
special interest when considering the molecular reasoning behind a biological sub-classification. In
the current set, however, a literature search could not link any of the high scoring features with
functionally important residues.

The Glutathione S-Transferase Domain

We turn to test our discriminative approach in the more challenging task of discriminating func-
tional sub-families. The next data set, prepared based on the Prints database, contains different
members of the glutathione S-transferase (GST) domain family, which we have already used in a
somewhat different context in the previous chapter. In most of these proteins, the GST domain
participates in the detoxification of reactive electrophilic compounds by catalyzing their conjuga-
tion to glutathione. However, a sub-family termed the S-crystallins, while sharing an evolutionary
history with the rest, has lost this function and appears to have taken a different, more structural
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class family name #seq.

c1 GST - no class label 298

c2 S crystallin 29

c3 Alpha class GST 40

c4 Mue class GST 32

c5 Pi class GST 22
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Figure 6.4: Classification accuracy comparison for the GST domain. (left) The five GST sets,
of which c1 is much larger than the rest, containing all GST domain sequences with no known sub-type
classification. (right) We see that despite the skew in class sizes, and high sequence similarities between
members of the different sets, the DVMM outperforms the generative algorithms, at all model size, including
the minimally pruned one which obtains near 98% classification accuracy.

role. Within the former majority of GST domain proteins, sub-families with more subtle functional
differences are currently being defined and analyzed. We have thus chosen to define five families:
the S-crystallin, three other GST classes retaining the detoxification function, and a fifth class made
of all class-unlabeled GST domain proteins. Figure 6.4 holds resulting set names and sizes.

Before turning to analyze the results, we note that all GST sequences share significant sequence
similarity, to the point that the Pfam database of HMMs (Bateman et al., 2002), currently con-
sidered the state of the art in generative modeling of protein families (Section 2.2.1), has chosen
to model all these sequences using a single HMM which does not distinguish between the different
sub-types. Additionally, in the table in Figure 6.4 we see that relative class size, reflected in the
empirical prior probability P̂ (C) was especially skewed in this test, since we used all GST proteins
with no known sub-classification as one of the groups. This skewing towards the label-less class is
a known difficulty for classification schemes in general.

Despite of the above reservations, the performance graph in Figure 6.4 shows the DVMM
algorithm to perform particularly well in this test, significantly surpassing the generative modeling
approaches, at all model sizes. For example, the minimally pruned DVMM scored almost 98% in
accuracy, while the generative methods peaked at 93%. Moreover, the DVMM accuracy using about
500 features was comparable to the accuracy of the generative PST approach, using some 400,000
features. The distinctive advantages of the DVMM approach in this test may be explained when
considering the high similarities between members of all classes. In terms of accuracy per number
of features, both the generative approaches take up modeling the rich features common to all
sequences who share this doamin, in order to best approximate sequence generation statistics. The
discriminative approach on the other hand, gives precedence to the most discriminating features,
ignoring the many statistical correlations common to all classes. In addition, as it directly tries
to minimize the discrimination error, the disregard for common features allows it to perform best,
even with minimal pruning.

Again, in Table 6.2 we discuss the top ten sorted features with respect to all suffixes of length
four. It is further demonstrated there how this automated method can help suggest improvements
to the Prints semi-manual fingerprints generation procedure.
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class feature P̂ (σ|s, c) P̂ (s|c) seq-corr. fing-corr.

c3 AAGV|E 0.74 0.0037 77% 52%

c2 AAGV|Q 0.38 0.0020 31% 0%

c2 YIAD|C 0.49 0.0016 34% 31%

c5 LDLL|L 0.43 0.0029 45% 0%

c1 YIAD|K 0.46 0.0003 4% −

c3 YFPV|F 0.42 0.0011 20% 0%

c2 GRAE|I 0.70 0.0043 93% 0%

c5 DGDL|T 0.49 0.0031 54% 50%

c5 YFPV|R 0.45 0.0026 45% 0%

c5 KEEV|V 0.51 0.0029 54% 0%

Table 6.2: Best discriminating features for the GST domain. The ten best DVMM features of length
four are shown, top down from best, for the GST domain sub-families classification test of Figure 6.4. Table
legend is as in Table 6.1. Note that class c1 was constructed from all GST domain proteins without class
labeling, and thus has no Prints fingerprint. Testimony of the relative difficulty of this task can be found in
the fact that now only three of the top ten features are unique to their class. Moreover, six of these appear
solely outside the Prints fingerprints, suggesting a refinement of the Prints GST domain sub-division.

6.5 Discussion

This chapter describes a well defined framework for learning variable memory Markov models in
the context of discriminative analysis. It extends the approach taken in Chapter 3 to an explicit
multiclass setting. The switch from generative one-against-all approach to a discriminating training
framework is shown to be worth while. In tests where the different classes are easier to separate,
such as a protein superfamily classification test, it is shown to improve performance at any restricted
model size. Discriminative analysis is shown to be particularly beneficial when modeling protein
sub-families where the similarity between members of the different classes is very high. In such a
test the superiority of the discriminative approach is maintained even in a minimally pruned setting,
as it disregards many features common to the different classes, and as such of no discriminating
power. In comparison, HMM approaches, such as that of Hannenhalli and Russell (2000), reviewed
in Section 2.4, is much more demanding computationally (see Chapter 3). It also relies on the
quality of the multiple alignment from which its models are learnt, which the PST approach does
not require.

As we have seen, the sorting of the resulting discriminating features allows the highlighting of
features of variable lengths which differ between the classes. These can be used to suggest im-
provements to the semi-manual crafting of discriminating fingerprints done by the Prints database.
While of proven value for discriminating sub-families, the PST top ranking features are not easily
tied to function altering positions between the different classes. To see why this is so, reconsider the
nature of the features we use. In order to capture the functional importance of a specific residue,
we need to model some consistent context that precedes it. When one returns to examine the
multiple alignment of Figure 2.9, where functionally important residues are numbered, it is seen
that while the position itself is conserved within sub-types, and differs between them, the context
that precedes it is far less conserved. In this particular aspect, a correct multiple alignment is very
valuable, as Hannenhalli and Russell (2000) have demonstrated.

An interesting extension of the current work can try and extend the features chosen by the
PST, or indeed to merge these, in a post-processing fashion, to allow modeling more complex dis-
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criminative contexts. One way to do so would be to extend the work of Eskin et al. (2000) to
a discriminative framework. It would also be interesting to enrich the mulitple alignment depen-
dent methods, such as that of Hannenhalli and Russell (2000), to allow for context dependencies
which extend through more than one column, as these dependencies clearly exist in the proteins
themselves.

From a theoretical point of view, a formal analysis of the algorithm is required. Indeed, it
may even be possible to extend the theoretical results of Ron et al. (1996), to the context of
discriminative VMM models.

This chapter is based on an extended abstract (Slonim et al., 2002) which was presented at
ICML 2002, and was later developed to a journal version (Slonim et al., 2003).
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Concluding Remarks

This thesis has focused on the introduction of variable memory Markov models into bioinformatic
research, and the field of protein sequence analysis in particular. We briefly review our contribution,
and survey promising directions for future work.

7.1 Overview

The sequence of any novel protein remains by far its most accessible characteristic. For all proteins,
the sequence is also the main determinator of structure. The particular shape of a protein, together
with residue identities confer to it its functional role, or roles. A well established fact in protein
sequence analysis determines that protein sequence similarity correlates well with both structural
similarity and functional similarity (for a recent quantitative study see Wilson et al., 2000).

The conceptual building blocks of all proteins are the domain or domains from which they are
composed. A protein domain is generally defined as a sequence region which folds into a particular
compact structure, typically one with a hydrophobic core. Domains present one of the most useful
levels for understanding protein function, as in most cases a single domain, or a combination thereof
is directly implicated in conferring specific functionality to a protein that contains it. The ever-
increasing numbers of sequences in databases provide new sources for domain detection. Indeed, as
Figure 7.1 shows, for the past decade or more, the discovery rate of novel domains, using sequence
homology or structure determination methods has maintained roughly linear growth. With the
growing number of known protein families came the realization that domains themselves may have
evolved from smaller structural units such as repeats or the assembly of smaller folding motifs and
other ancient motifs into the larger structures seen today (Peng and Wu, 2000; Lupas et al., 2001).
It also became clear that while many domains appear by themselves, or in very similar combinations
with other domains, some domain types are found in combination with very different domains in
different proteins. These modules or mobile domains, allow the transfer of functional information,
such as being involved in a particular kind of interaction, between distinct protein classes (Copley
et al., 2002). Our lack of deep understanding of sequence-structure relationship, and the diversity
of protein domains, and domain combinations pose a challenge to our understanding of the protein
world.

The definition of reliable and efficient computational models for the analysis of protein sequences
at these different descriptive levels is an active field of research. In this thesis we have introduced
variable memory Markov (VMM) modeling into this field. As evident from our survey in Chapter 2,
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Figure 7.1: The accumulation of detected sequence domains and solved structures along the
years. The cumulative plot shows the increase in novel sequence domains and solved structures over the last
two decades. Characterized domains (in bold) and solved structures are broken by function into extracellular,
nuclear and signalling (in blue, green and orange, respectively). (adapted from Copley et al., 2002)

this approach differs markedly from the modeling techniques currently in use in protein sequence
analysis. Multiple sequence alignments (MSA) based profiles and hidden Markov models (HMM)
aim for position based analysis of the underlying sequences. In defining the positional relationship
between the different sequences, these models then resort to assume, for computational tractabil-
ity, statistical independence between the different positions. From a biological point of view this
simplification is certainly not true, as the different residues observed at a given position reflect the
constraints imposed on the position by its spatial neighbours. The VMM approach to modeling
protein sequences foregoes explicit positional alignment. As such it also does not rely on the sim-
plifying independence assumption. Rather, it focuses on significant appearances of short contexts
within unaligned related sequences, often capturing meaningful sequence motifs (Bork and Koonin,
1996). As we have shown in Chapter 3, related protein domain instances use very restricted sets
of such contexts. These distinct contexts allow the recognition of novel family members through
alignment-free analysis. As a result we were able to build compact computational models which
capture the notion of a protein family from a seed set of unaligned family members. By bypassing
the alignment phase altogether we make away with what is currently the least automated task in
portion based methods. Following the algorithmic optimization of the VMM training and predic-
tion algorithms in Chapter 4, these protein family models also take linear time and space to train,
and classify with, compared to the quadratic complexity of the equivalent HMM algorithms.

The stochastic tiling of related protein sequences with common contexts carries additional
advantages. First, one may typically model several domains using a single VMM. The reason
being that the different domains use different context vocabularies, which are naturally modeled
without interference in a single tree model. This property makes our algorithm especially valuable
in analyzing sets of proteins where the same domains appear in different combinations (Bashton
and Chothia, 2002). It can also serve to facilitate the detection of shorter swaps that have taken
place during evolution between different domain families (Fliess et al., 2002).

Having realized this ability, we set forth in Chapter 5 to segment a set of unannotated sequences
into the underlying recurring domains. By first modeling the entire set using a single VMM model,
we then split this model in successive steps into several VMMs, each of which typically modeling a
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distinct subset of the sequences. By correlating model complexity with the amount of data assigned
to it on the one hand, and dividing the data between the models in proportion to their relative
modeling accuracy on the other, we obtained a self regularizing soft clustering algorithm. This
algorithm was shown to capture, without aligning, instances of different domains within the given
sequences. Finally, in Chapter 6, we applied VMM modeling to the closely related challenge of
differentiating domain families into sub-types of sufficiently distinct functions. As all sequences
in such sets are typically highly similar, it is often impossible to differentiate between the sub-
types using generative modeling methods. With these methods, which include the VMM and
HMM discussed above, sequence scoring, and subsequent classification is done based on observed
correlations in the entire sequence. Discriminative modeling, on the other hand, aims at modeling
only the features which best discriminate between the sub-types. As such it foregoes many features
which are reliable descriptors of each group, but are also common to several or all groups due to
their high sequence similarity. This approach allowed us to design much smaller, and yet more
precise models to determine sub-class traits. It also has the potential of highlighting function
conferring residues that differentiate between the different classes, as parts of its used features.

7.2 Future Directions

This work can be further extended in several exciting directions.
As we have demonstrated, the probabilistic suffix tree (PST) variable memory model performs

well when modeling highly conserved protein families. However, as family conservation decreases,
the variety of short consecutive motifs grows considerably, while their statistical significance levels
drop (recall Figure 3.9). Based on the work of Kermorvant and Dupont (2002) it appears that
more sophisticated smoothing techniques may improve PST performance, by compensating for
small sample size effects in longer features, and less conserved families. Chen and Goodman (1998)
survey several established methods in natural language processing to interpolate the observed counts
of more complex features, using those of simpler ones. These may perhaps be combined with the
work of Sjölander et al. (1996), which take a more Bayesian approach to probability smoothing in
protein context, by using Dirichlet mixture models of typical amino acid distributions. A similar
effect can be obtained if one tries to reduce the size of the alphabet by grouping together amino
acids that share certain properties. One could do the grouping based on physico-chemical properties
(see Figure 1.1), or based on empirical measures of substitution propensity, as was done by Cannata
et al. (2002).

One especially appealing way to handle less conserved families would be to explicitly incorporate
into the learning procedure the assumption that the observed sequences are a corrupted version
of the original ones. Angluin and Csűrös (1997) have made such an attempt, where they extend
the learning algorithm of Figure 3.2 to assume that the input sequences were passed through a
memoryless noisy channel before observation. The general framework suggested there can be aug-
mented by estimating explicit patterns of protein sequence evolution. Eskin et al. (2000) have tried
to address this issue by introducing wild-cards into the learned features. While highly attractive
from a biological point of view, application of wildcards causes the space and time complexity of
the algorithm to grow rapidly, allowing for only very limited use of this feature in practice. It
would be interesting to restrict the use of wildcard instances, guided by biological insights, such as
those obtained by Lupas et al. (2001), who focus on the detection and characterization of conserved
short motifs in broad classes of proteins. Another interesting direction would be to compare the
modeling power of a PST (or similar) based approach, with that offered by a Bayesian framework.
Willems et al. (1995) have shown that instead of generating a single hypothesis (model) per learned
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set of strings (protein family), one can efficiently sum over a weighted set of all possible PST-like
models. The original approach of Willems et al. (1995) would have been prohibitively expensive in
terms of memory requirements for an alphabet size of twenty. Algorithmic improvements, such as
the work by Kennel and Mees (2002), have recently made the approach more viable. Note however,
that while most of the previous methods can all be easily extended to the context of segmentation
or discriminative analysis, the Bayesian approach which does not commit to any single model is
probably harder to accommodate within those schemes.

Apart from the above enhancements, the segmentation algorithm of Figure 5.6, may benefit
from a more accurate model selection criterion than the asymptotic minimum description length
(MDL) variant. In our experience, while the MDL driven PST learning algorithm of Figure 5.1
crucially restrains model sizes during the cluster splitting process, it does so rather aggressively.
While we have tried to re-weight the two terms of the MDL equation (model and data description
lengths), other model selection methods may perform consistently better. One such approach is
the extension of the MDL principle to on-line estimation of effective code lengths, discussed by
Rissanen (1989), although this approach may require additional algorithmic work to improve its
runtime performance. Other, more general criteria to PST model selection, explored by Bühlmann
(2000), may prove beneficial in our context. Another important direction in which one may enhance
the general segmentation framework, is to explicitly define the model we attempt to estimate as
a hidden Markov model (HMM) of PSTs. Currently, this switching is implicit in interpreting the
segmentation results, such as those presented in Figure 5.10. Namely, one may define a transition
matrix which governs the switching between several PST models, each ultimately generating the
instances of a single domain. While theoretically a relatively straight-forward extension, direct esti-
mation of transition probabilities adds to the runtime complexity of the algorithm, and may prove
hard to infer in the deterministic annealing framework. An attempt at extending the optimization
results of Chapter 3 beyond single model estimation will be very useful in this context.

Our optimization approach may be simpler to extend to the discriminative analysis framework
of Figure 6.1. While already very fast, unified training and optimized pruning of the discriminative
VMM will turn this tool even more powerful, and may facilitate the incorporation of more complex
features, such as those discussed above. Approaches akin to that of Eskin et al. (2000) can greatly
assist in highlighting features that involve class differentiating residues.

Finally, the general rich feature based approach advocated in this thesis can be extended to
both broader modeling schemes and related bioinformatic challenges. An example of the former is
the extension of VMM modeling to encode the correlation of one sequence with respect to another,
in a similar approach to that taken in input-output hidden Markov modeling (IO-HMM) or by
transducers in general (see Bengio, 1999). This can allow one to incorporate secondary structure
predictions into the basic PST classification scheme, and may also carry over to the more complex
segmentation and discrimination algorithms.

From the biological point of view, it would be interesting to combine the strengths of the
alignment-based methods with those of the VMM approach. For example, by using PST training
as a pre- or post-processing stage to guide the generation of accurate multiple sequence alignments,
from heterogeneous sets of protein sequences. It would also be interesting to attempt to generate a
fast hierarchical classification scheme, built from a cascade of discriminative analysis VMM models,
following one of the common structural classification schemes. A much more challenging effort may
attempt to reconstruct and augment the hierarchical view, based on statistical distances between
the VMM models of the different families and super-families.

Variable memory modeling can also assist in conceptually different tasks such as learning prior
probabilities for the occurrences of different domains in combinations of varying lengths and repe-
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titions. Genomic data also abounds in contextual dependent events. One such area is the field of
detection and segmentation of coding genes within unannotated genomic sequences, where indeed
similar approaches have already shown promise (Salzberg et al., 1999). The related fields of molec-
ular sequence evolution and comparative genomics also hold great potential for incorporating this
approach.
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Appendix A
Additional Works

Addition publications in which the author has taken part during his graduate studies, of which two
major ones are reproduced below:

• The development of techniques for efficient exact p-value computation in discrete settings,
such as those often found in the analysis of biosequences. Enclosed below is the extended
abstract (Bejerano, 2003b) which won the best paper by a young scientist award at RECOMB
2003, and was later expanded to a journal version (Bejerano et al., 2003).

• A conceptual framework that tries to tie the evolution of protein coding sequences with
information theoretic notions of coding efficiency. Enclosed is the manuscript (Bejerano et al.,
2000) which was presented in poster format at the Human Genetics in the Post-Genomic Age
meeting, 2000.

• An application of the variable memory models analysed in the thesis, to computer generated
composition and musical improvisation, based on a given set of musical pieces. An extended
abstract (Lartillot et al., 2001) was presented at ICMC 2001, and was later developed to a
journal version (Dubnov et al., 2003).

• An attempt to analyse the promoter sequences in Escherichia coli, which led to the organi-
zation of a database of experimentally verified transcription start sites in E. coli (Hershberg
et al., 2001), and helped in the discovery of novel small RNAs in the E. coli genome (Argaman
et al., 2001).

• Detection of transcription binding sites in unaligned sets of sequences (Barash et al., 2001).

A-1



Appendix A

A.1 Efficient Exact p-Value Computation
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A.2 Protein Evolution and Coding Efficieny
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