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ABSTRACT
The next generation of air traffic control will require au-
tomated decision support systems in order to meet safety,
reliability, flexibility, and robustness demands in an environ-
ment of steadily increasing air traffic density. Automation is
most readily implemented in free flight, the segment of flight
between airports. In this environment, centralized control
is impractical, and on-board distributed decision making is
required. To be effective, such decision making must be
cooperative. Satisficing game theory provides a theoretical
framework in which autonomous decision makers may coor-
dinate their decisions. The key feature of the theory is that,
unlike conventional game theory which is purely egotistic in
its structure, it provides a natural mechanism for decision
makers to form their preferences by taking into consideration
the preferences of others. In this way, a controlled form of
conditional altruism is possible, such that agents are able to
compromise so that every decision maker receives due con-
sideration in a group environment. Simulations demonstrate
that reliable performance can be achieved with densities on
the order of 50 planes per ten thousand square miles.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Int-
elligence—Multiagent systems; I.2.8 [Artificial Intelli-
gence]: Problem Solving, Control Methods, and Search—
Control theory ; J.2 [Computer Applications]: Physical
Sciences and Engineering—Engineering

General Terms
Algorithms, Design, Experimentation, Performance, Theory
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1. INTRODUCTION

Recent advancements in navigation aids, communication
technologies, and computing power are making possible a
new concept of air traffic control (ATC), namely free flight,
an operating environment where pilots are allowed to select
their flight path in real time [1]. Ideally, free flight will result
in an increase in efficiency without reducing the safety of
air travel. The annual cost to the airline industry due to
ATC-caused delays is estimated to be $5.5 billion [2]. As
air traffic density increases, so too does the loss resulting
from inefficiencies and the workload of air traffic controllers.
If appropriately coupled with anticipated improvements in
automation, free flight can reduce airline operating costs and
reduce controller workload.

The most important issue in ATC is conflict detection
and resolution. Much of the current research for automat-
ing ATC focuses on this problem, particularly in the area
between airports. This environment is an appropriate can-
didate for automation because plane density is low compared
with areas near airports and because rigid scheduling is un-
necessary. Automation would give pilots, dispatchers, and
airline managers more responsibility in air traffic control.
Airline managers could plan their routes to minimize dis-
tances traveled. Airline dispatchers, who routinely observe
weather patterns, would have the flexibility to suggest course
changes that avoid dangerous wind and storms. Pilots could
define their own cruising altitudes and speeds for greater fuel
efficiency. The workload of air traffic controllers would be
reduced considerably, as individual planes would be respon-
sible for immediate threat avoidance. Air traffic controllers
would continue to monitor aircraft separation, control the
air space surrounding airports, and schedule runways.

Much of the recent research in ATC has focused on solu-
tions for conflict avoidance that are based on fixed rule sets
that dictate actions based on situational geometry. This ap-
proach can achieve arbitrarily good performance in a fixed
scenario, such as two intersecting flows of aircraft (see Sec-
tion 6.2), but acceptable performance in arbitrary situations
cannot be guaranteed. Both centralized and distributed al-
gorithms have been proposed to aid in conflict resolution,
but previous schemes involve little if any cooperation. As
we will show in this paper, a cooperative multi-agent algo-
rithm can effectively and efficiently resolve most conflicts,
even with high traffic densities.
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A centralized ATC approach would have to deal with po-
tentially thousands of aircraft spread over a vast geographic
area to ensure resolution of all possible conflicts. Further-
more, as the number of planes increases, the complexity of
conflict resolution grows and quickly becomes computation-
ally intractable. Similarly, the possibility that a single fail-
ure could disable a significant portion of the centralized sys-
tem creates a highly undesirable risk [3].

In contrast, a distributed system, where agents act co-
operatively to maintain spatial separation, could be more
robust in the face of ATC node failures. Each agent would
need to focus only on a relatively small subset of the global
problem. By taking into consideration only those aircraft
that pose potential threats, the need for a fully global so-
lution is eliminated. At a minimum, a suitable distributed
solution should have several characteristics: (1) the aircraft
must coordinate their decisions in avoiding collisions; (2)
the avoidance maneuvers must be generally applicable and
not limited to specific geometric situations; (3) the approach
must be realistic and not oversimplify the problem; (4) the
solution must scale to high traffic densities.

In order to implement a cooperative system, aircraft must
be able to communicate. Fortunately, recent advances in
communication systems make this possible. For example,
the Mode S transponder is a selective broadcast messag-
ing system that allows ground control to identify each plane
using a unique 24-bit id. Originally developed in 1975, it
achieved widespread use in the 1980’s as a way of broad-
casting a plane’s altitude to ground control. In the 1990’s,
changes were made that allowed the plane to broadcast its
GPS information as well. Expanding this capability to in-
clude heading, velocity, and destination in the broadcast is
reasonable given current technology.

Our approach to this distributed cooperative problem is
based on satisficing game theory [4], which provides the ba-
sis for effective algorithms for multi-agent decision making.
Satisficing game theory differs from conventional game the-
ory in that it allows individuals or groups to condition their
own preferences on the preferences of others. This feature
allows for an inherently cooperative approach to conflict res-
olution. By exchanging the information and goals of each
agent, cooperation between agents can be realized even in
a completely distributed system. This paper briefly intro-
duces satisficing theory, recounts previous work in automat-
ing collision avoidance, presents our new satisficing solution,
and reports the results of simulation involving a variety of
scenarios.

2. SATISFICING
Agents based on satisficing theory have two roles, or per-

sonas. One persona focuses on achieving the fundamental
goal of the decision problem, regardless of cost, while the
other persona focuses on conserving resources and reducing
costs without worrying about achieving the goal. Together,
these two conflicting personas represent a decision maker,
who must balance the desire to achieve a goal with the cost
of doing so. We require two utilities to account for the pref-
erences of these two personas. One utility characterizes the
selectability of the options available to the decision maker;
that is, the degree of effectiveness of the options with re-
spect to achieving the goal (e.g., staying on a direct path
to the destination) without worrying about the cost of do-
ing so. The other utility characterizes the rejectability of

the options; that is, the degree to which resources are con-
sumed (e.g., time delays, exposure to hazards). These two
utilities are normalized to be mass functions. In the multi-
agent case, they are multivariate mass functions that permit
the simultaneous characterization of a multi-agent decision
system. Because the utilities have the same mathematical
structure as probability mass functions, we may character-
ize relationships such as independence and conditioning that
are analogous to the probabilistic notions. That is, they
posses the same syntax as probabilities, but with different
semantics.

Let pS and pR denote selectability and rejectability mass
functions, respectively, and let pSR denote the joint mass
function when simultaneously taking into consideration both
selectable and rejectable attributes. For an n agent system,
the joint selectability/rejectability is a mass function with
2n variables of the form

pS1S2···SnR1R2···Rn(u1, u2, . . . , un; v1, v2, . . . , vn),

where S1S2 · · ·Sn corresponds to the collection of selectabil-
ity personas and R1R2 · · ·Rn corresponds to the collection
of rejectability personas. The variables ui, i = 1, . . . , n cor-
respond to the options available to the ith agent as viewed
from the perspective of its selectability and the variables vi,
i = 1, . . . , n correspond to the options available to the ith
agent as viewed from the perspective of conserving resources.
This interdependence function captures all of the decision-
making considerations that may affect a multi-agent system,
and its construction is an essential component of satisficing
game theory. Its construction can often be guided by ap-
pealing to the influences that exist between agent personas.

S1 R3 S3

S2 R2

R1

Figure 1: Praxeic network for three agent system

To illustrate, consider the directed acyclic graph displayed
in Figure 1, which corresponds to a three-agent system (and
hence with three selectability and three rejectability per-
sonas). In this system, the selectability of S1 influences S2

and R3. Furthermore, R3 influences S2, and both S2 and R2

influence R1. Finally, S3 neither influences nor is influenced
by any other persona. The interdependence function of this
influence structure may be expressed as

pS1S2S3R1R2R3 = pR1|S2R2 · pS2|S1R3 · pR3|S1 · pS1 · pR2 · pS3

where arguments have been suppressed in the interest of
brevity. The conditional mass functions represent the in-
fluence flows between nodes of the graph. For example,
pR1|S2R2(v1|u2; v2) expresses the amount of rejectability that
Agent 1 should ascribe to option v1, given that Agent 2 were
to select option u2 in interest of achieving its own goal and
reject option v2 on the basis of conserving resources. The
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network presented in Figure 1 and its corresponding interde-
pendence function is equivalent to a Bayesian belief network.
These influence networks are called praxeic networks to em-
phasize that the linkages deal with the costs and benefits of
taking action, rather than dealing with beliefs.

2.1 Multi-Agent Decision Making
For a single agent system, the notion of maximizing ex-

pected utility appears incontrovertible. When extending
this concept to the multi-agent case, a standard approach is
for all decision makers to maximize expected utility and to
assume that all others will do likewise; the result is the Nash
equilibrium. Such solutions, however, can be overly pes-
simistic. (In the well-known Prisoner’s Dilemma game, the
Nash solution yields poor results for both players). While
utility maximization may be appropriate for adversarial sit-
uations, it does not naturally fit situations where the de-
cision makers are disposed to cooperate, even though they
may not be conflict-free. In such situations, decision mak-
ers must be able to weigh the tradeoffs between their own
selfish interests and the overall well-being of the group. Sat-
isficing game theory provides a mathematically rigorous way
to make such compromises in a controlled way.

Let us consider a set of n decision makers, and let Ui

denote the set of options available to agent i, i = 1, . . . , n. A
satisficing game is the triple (n, U1×· · ·×Un, pS1···SnR1···Rn).
To solve this game, we must compute the joint selectability
and rejectability marginals as, respectively

pS1···Sn(ui, . . . , un) =
�

v1∈U1

· · ·
�

vn∈Un

pS1···SnR1···Rn(ui, . . . , un, vi, . . . , vn) (1)

and

pR1···Rn(vi, . . . , vn) =
�

u1∈U1

· · ·
�

un∈Un

pS1···SnR1···Rn(ui, . . . , un, vi, . . . , vn). (2)

Similarly, we then compute the individual selectability and
rejectability marginals as

pSi(ui) =
�

u1∈U1

· · ·
�

ui−1∈Ui−1

�
ui+1∈Ui+1

· · ·
�

un∈Un

pS1···Sn(u1, . . . , ui−1, ui, ui+1, . . . , un). (3)

and

pRi(ui) =
�

u1∈U1

· · ·
�

ui−1∈Ui−1

�
ui+1∈Ui+1

· · ·
�

un∈Un

pR1···Rn(u1, . . . , ui−1, ui, ui+1, . . . , un). (4)

These unconditioned utilities can be computed from the in-
terdependence function using methods applied to Bayesian
networks, including Pearl’s Belief Propagation Algorithm [5]
and the Sum-Product rule for factor graphs [6].

The jointly satisficing solution at caution level q is the
subset of all option vectors such that the joint selectability
is at least as great as the caution level multiplied by the
joint rejectability, that is

Σq =
�
u ∈ U : pS(u) ≥ q · pR(u)

�
.

The individually satisficing solutions for each agent are
obtained from the marginal selectability and rejectability

functions, yielding the individually satisficing solutions:

Σi
q = {ui ∈ Ui : pSi(ui) ≥ q · pRi(ui)}.

The jointly satisficing set comprises all joint options that
provide a group benefit that exceeds (as modulated by q) the
group cost, and the individually satisficing sets comprise all
individual options that provide an individual benefit that
exceeds (as modulated by q) the cost to the individual. If
the intersection of the two sets is empty, q can be gradually
reduced to increase the number of options available in the
individual satisficing sets. This allows the individuals to
sacrifice self-interest for the benefit of the entire group.

Satisficing theory thus provides a natural mechanism for
an agent to take into consideration what other agents want
as well as what they can do when forming its own prefer-
ences. It therefore becomes possible to evaluate “what-if”
scenarios involving multiple agents. The agent can detect
potentially cooperative situations and respond accordingly,
enabling it to consider approaches to problems that are sim-
ply not available with optimization-based decision-making.
As a result, satisficing agents, which make no claim to op-
timality, can sometimes outperform “optimal” solutions to
cooperative multi-agent problems.

For example, agents representing two aircraft on a colli-
sion course could infer that neither wants the collision to
occur. Only one plane needs to make a heading change
to avoid a collision, but if the planes do not cooperate,
both may turn. Each satisficing agent determines its in-
fluence flow dynamically using some ranking metric, such as
accumulated delay. Each agent computes the selectability
and rejectability of its options using Equations 3 and 4 and
makes its decision. This will result in only the lower ranking
agent making a heading change, because the higher rank-
ing agent’s selectability is independent of the lower ranking
agent. However, if the higher ranking agent were already
planning to change heading (to get back on course, say),
the other agent would not make a heading change. This is
an example of multi-lateral decision-making improving the
performance of the system.

2.2 Altruism
Cooperative behavior almost always requires some amount

of altruism from the agents involved. This is difficult to
model using traditional game theoretic approaches, which
are based on exclusive self-interest. In the previous exam-
ple, exclusive self-interest would dictate that each agent let
the other take evasion action in order to avoid the cost of
changing course, perhaps leading to both agents taking eva-
sive action later to avoid the cost of a collision.

One common solution is to modify the agent’s utilities so
that it perceives altruistic acts as self-serving. This leads
to one-sided categorical altruism. The altruistic agent will
always behave altruistically, even when the agents it intends
to help do not take advantage of the sacrifice.

In contrast, a satisficing agent is fully aware of its own
interests, but also considers the preferences of the agents
it interacts with. It displays conditional altruism by con-
sidering various factors before making sacrifices, including:
(a) the level of trust in (or willingness to cooperate with)
particular agents, (b) the likelihood that other agents will
actually be benefited by a sacrifice, (c) the amount of flexi-
bility afforded by an agent’s circumstances at the time, and
(d) whether or not the agent cares about the decision the
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other agent makes.
Conditional altruism allows an agent to balance individual

and group interests in well-defined ways. It also allows an
agent to behave cooperatively while still protecting itself
from exploitation — if it does not believe that cooperation
is possible or likely, it will act in its self-interest.

3. PREVIOUS WORK
A variety of simulation environments and algorithms have

been created by other researchers to address collision detec-
tion and resolution. Krozel et al. describe three algorithms,
beginning with a centralized controller [7]. The system per-
forms a look ahead, a prediction of what conflicts will occur
in the next eight minutes if all planes were to continue on
their current heading, and then groups the planes accord-
ing to these interactions. Permutation sequences are estab-
lished for all aircraft in a cluster. These are used to rank
the planes, each plane needing only to avoid planes with a
higher ranking. If no conflict free paths for all planes can be
found, that permutation is considered to have failed and the
next is processed. To limit the computation, a maximum of
100 permutations are processed if the cluster size is greater
than four. If no sequence provides a conflict free path, the
permutation with the least conflicts is selected.

The authors also present two decentralized strategies. Both
algorithms use a “frontside/backside” approach in which
a plane may go in front or behind a plane to avoid con-
flict. The “myopic” algorithm finds the closest conflict and
chooses the side that requires the smaller heading change.
If any new conflicts are created, they will be resolved during
the next round. The “look-ahead” strategy checks to see if
the more efficient maneuver will cause a conflict later on. If
a conflict is detected, the algorithm checks the opposite side.
If that also leads to a conflict, the algorithm starts from the
original solution and increments 2 degrees until a conflict
free path is found. Evaluated in a simulation of open air
space with randomly generated planes, the algorithms are
acceptable with moderate traffic densities, but no level of
performance can be guaranteed with high densities because
only a subset of the solution set is searched.

Dugail, Mao, and Feron introduce a geometric algorithm
and prove that all conflicts can be resolved with bounded
maneuvers [8]. The example scenario describes two flows
of air traffic intersecting at right angles in the middle of
the simulated air space. The initial separation in flows are
uniformly distributed over a 5 to 10 mile distance. A 100
mile radius circle is drawn around the point of intersection.
As each plane enters the circle, it is required to make one
movement that ensures that it will not conflict with planes
already in the circle. Once the initial maneuver is com-
pleted, the plane must continue to fly on a straight path
until exiting the circle, ensuring it will create no new con-
flicts. This algorithm is specialized to this scenario, and it is
uncertain how it would behave under other circumstances.

Resmerita, Heymann, and Meyer present a resource allo-
cation approach to collision detection and resolution called
DOR [9, 10]. It partitions the airspace into distinct “cells”
that may only be occupied by one aircraft at a time, ensuring
separation. These cells become the vertices of an undirected
graph whose edges are paths between cells. Agent trajec-
tories are directed, timed graphs that overlay the airspace
graph. Before an aircraft enters the system, it registers itself
with a central controller that maintains a list of all aircraft

and their trajectories. The controller then distributes re-
sources (timed access to cells) as planes request them, elim-
inating any need for agents to communicate with each other.

Conflict resolution becomes necessary when an agent de-
sires a resource that has already been allocated. First, the
agent will attempt alternate paths. If no acceptable path can
be constructed, the controller will request that agents hold-
ing the disputed resources attempt to free them by choos-
ing alternate paths of their own. The resulting cascade of
resource shuffling has two possible outcomes: either the re-
sources for an acceptable path can be freed, in which case
the agent acquires them and proceeds, or it fails and the
agent is not allowed to enter the system. This algorithm is
optimal with respect to agent path quality (as determined
by each agent). Each agent in the system follows one of its
optimal paths; if an optimal path cannot be found, it does
not enter. The system that results is in Nash equilibrium —
no agent can unilaterally improve its path without causing a
conflict. Because the algorithm is computationally intense,
depends on a centralized controller, and requires every agent
to have full knowledge of the system, it is not well suited for
a distributed system.

Pallottino, Feron, and Bicchi describe a geometric ap-
proach to collision detection and resolution [11, 12]. Path
planning is modeled as a set of linear constraints on either
velocity or heading changes to be optimized with respect to
total flight time and course deviations, respectively. The
complexity of their algorithm is O(n2); it can be solved in
several seconds with up to 15 agents involved in simultane-
ous conflict threats. They also prove that a decentralized
adaptation of the algorithm is possible given a proper look-
ahead distance. In this case the constraints imposed on an
aircraft depend on its state with respect to other nearby
craft. The authors consider the three-agent case, which re-
quires eight different constraint formulations. The safety of
the decentralized scheme is proven by considering worst-case
maneuvering requirements during state transitions as other
aircraft become visible. The algorithm can quickly become
unwieldy as the number of constraint formulations that must
be considered grows as O(2n) where n is the number of vis-
ible aircraft.

4. SYSTEM EVALUATION TECHNIQUES
Before presenting our algorithm for conflict resolution, we

discuss evaluation metrics used to evaluate other schemes.
Given the importance of safety in managing air traffic, the
most important characteristic of conflict resolution schemes
is clearly their effectiveness in avoiding safety incidents. This
can be established empirically through simulation, or, ide-
ally, proven using some analysis technique. Unfortunately,
proofs are often possible only after making unrealistic as-
sumptions that make the problem tractable, such as instan-
taneous lateral translation [13]. Some published algorithms
are proven correct in a specific scenario, such as the conflicts
occurring between two fixed flows of aircraft at a specific
point [8], or the conflicts that can occur between a small
number of agents (typically 2 or 3) [12]. Given these limi-
tations, it appears that previously proposed algorithms are
impractical for realistic ATC applications despite proofs of
their correctness. The complexity inherent in automating
ATC suggests that an optimal solution is intractable and
unrealistic.

System efficiency is a useful and intuitive metric of solu-
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tion quality [7]. It can be thought of as the degree to which
an aircraft can fly the straight line path between successive
waypoints. Deviation from the straight line path results in
a time delay, as do changes in velocity. We define system
efficiency as

SE =
1

N
·

N�
i=1

� ti

tdi + ti

�

where ti is the ideal flight time for the straight line path and
td is the difference between actual and ideal flight time for
each of the N aircraft. In general, as more planes are added
to a system implementing free flight, the number of conflict
avoidance maneuvers will increase and the system efficiency
will be reduced.

Another metric of interest, although seldom addressed di-
rectly in evaluations of other proposed schemes, is calcula-
tion time [11]. The usefulness of an algorithm is limited by
its ability to run in real time, even if it produces extremely
desirable results. Clearly air traffic management is an ap-
plication with hard real-time constraints.

Some researchers also define a metric of stability, a mea-
sure of the extent to which solutions to present conflicts lead
to new conflicts in the future [7]. System stability is mea-
sured as the number of conflict alerts triggered when planes
fly their nominal (straight-line) trajectories divided by the
number of conflict alerts triggered when the planes are im-
plementing the conflict resolution scheme. A conflict alert
occurs when a plane detects a new conflict with the pro-
jected path of another plane in its vicinity. The metric gives
insight into the likelihood of a conflict resolution algorithm
overloading the system. A full comparative analysis of the
stability of our satisficing algorithm is ongoing and will be
described elsewhere.

5. THE ALGORITHM
The algorithm presented here is by no means the only

solution or even the best solution that could be devised using
a satisficing approach, but our studies show that it does give
good results.

Each second (or round), every agent is required to choose
one of five available options. The option set consists of: a
5 degree turn to the left, a 2.5 degree turn to the left, no
turn, a 2.5 degree turn to the right, and a 5 degree turn
to the right. These turning constraints limit the aircraft
to a minimum of 72 seconds per 360 degree turn. At the
beginning of every decision round, each plane is assumed
to have a current list of information from all other planes
within fifty miles. Conflict detection and cooperative avoid-
ance utilizes this broadcast information, which includes the
current heading, current velocity, current altitude, next way-
point (desired direction), and current delay time.

As mentioned in Section 2, an important part of satisfic-
ing is defining influence flows that adequately and succinctly
describe the system. Traditional Bayesian network tools are
useful for static influence flows; because the set of neigh-
boring planes changes frequently, ATC applications require
dynamic influence flows. Using simple criteria such as dis-
tance to destination, delays already accumulated, and time
in the air, aircraft rank each other so that the dynamic influ-
ence flows are acyclic. After the planes are ranked, the list is
pruned to decrease the total calculations required. For best
performance, it is important to consider only those agents

that can influence the current agent. First, all planes that
have a lower rank than the current plane are removed. Next,
all planes with which the currently considered plane has no
projected conflicts are removed from the list.

The selectability of an option is defined as the extent to
which that option allows the agent to achieve a goal. In
our algorithm, selectability is based on heading and the se-
lectabilities of higher ranking agents. An option that allows
an agent to follow its nominal route more closely has a higher
selectability. Options that take the agent further from its
destination naturally have lower selectabilities.

The formulation of selectability allows for cooperation.
Each agent examines the selectability of higher ranking agents.
If one of them strongly prefers a direction that will lead to a
separation violation, the current agent lowers its selectabil-
ity for those headings that would result in a conflict. This al-
lows for the conditional altruism previously discussed. Note
that the lower ranking agent does not have to sacrifice and
take a less selectable heading just because a higher ranking
plane might choose a conflicting option. The preference of
the higher ranking plane is also considered.

The rejectability of an option is defined as the cost of
choosing that option. In our ATC scenario, rejectability is
determined by possible conflicts. If an option will lead to a
possible conflict with another plane, that option is assigned
a higher rejectability. Rejectability values are scaled based
on the severity of the incident (near miss or collision) and
also by the projected time to incident.

ATC must be viewed as a risk-averse environment. While
any separation failure is unacceptable, planes must ulti-
mately arrive at their destinations, so successful algorithms
must balance safety and efficiency. In our algorithm, each
agent chooses the option that maximizes the difference be-
tween its selectability and rejectability. Thus, agents prefer
options that are low risk; options leading to possible con-
flicts will receive low selectability and high rejectability, thus
making them highly unattractive.

Two separate algorithms with these same influence flows
were created. The “full” model uses all the information
available to create influence networks for each visible plane.
Although necessarily incomplete (since it cannot see all in-
fluences on other planes), the model is able to make rea-
sonable approximations of the preferences of higher-ranking
planes. However, this approach can become computation-
ally intractable with high traffic densities. A “simplified”
model was developed with reduced computational overhead.
In this model, higher ranking planes are grouped together
based on their desired heading change (their most selectable
option), and then each group is treated as a single agent. Al-
though the efficiency and safety margins are slightly lower
than those of the full model, the simplified model is better
suited for very dense traffic.

By design, both algorithms are independent of the geome-
try or spatial relationships of any fixed scenario. They have
been simulated using a variety of scenarios as reported below
in Section 6.

5.1 A Simple Example
Consider the scenario in Figure 2 with two agents on a

collision course. Both agents are currently on a heading
that will take them directly to their destinations. Agent
one, denoted A1, is 5 minutes behind schedule and headed
to point Q. Agent two, A2, is on schedule and headed to
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point P . This means that A1 outranks A2, so when A2

calculates its selectability, it will take A1’s selectability into
account.

Figure 2: Two agents, each with two options

When the two planes see each other and conflict alerts
are triggered, each will calculate the selectability and re-
jectability of its two options (limited in this example). A1’s
selectability, pS1 , is simple. Flying straight, u1, will have the
highest selectability since that will take it in the direction of
its destination. A1’s rejectability, pR1 , will be a uniform dis-
tribution because it outranks A2. Therefore, A1 will choose
to go straight and rely on A2 to resolve the incident.

A2’s decision requires the following to be computed for
each of its available options:

pS2(ui) =
�

un∈U

fS(ui, un) · pS1(un)

pR2(ui) =
�

un∈U

fR(ui, un)

where ui is the choice A2 is considering, U is A1’s option
set, and pS1(un) is A1’s selectability of the option un. The
function fS(ui, un) has value one if A1 choosing un and A2

choosing ui will result in no incident and is zero otherwise.
Similarly, the function fR(ui, un) gives a value in the range
of zero (no incident) to one (immediate incident) depending
on the time until a projected incident assuming A1 chooses
un and A2 chooses ui. Of A2’s two options, u2 will be as-
signed the largest selectability, and u1 will be assigned the
largest rejectability. As a result, A2 will choose to turn left
and the collision will be averted.

Consider the changes if A1 has just completed a conflict
avoidance maneuver and its destination is actually point R.
In this case, its most selectable option will be u2, and A2

will no longer see its option u1 as resulting in a conflict.
Thus, A1 will turn and A2 will fly straight. A2’s altruism
in deferring to A1 is conditional on A1’s choosing an option
that causes a conflict.

6. RESULTS
Our simulation environment is similar to many used by

other researchers [7, 8, 13]. All aircraft are constrained to
fly at the same altitude. Changes in altitude, although an
efficient and effective conflict resolution maneuver in real-
ity, are not allowed; this enriches the problem by requiring
fewer aircraft to create a dense airspace. All aircraft fly at
the same velocity, 500 miles per hour. Heading changes are
assumed to take place instantaneously. Aircraft must main-
tain a minimum separation of 5 miles. If two planes come
within five miles of each other, a near miss is recorded. If the
separation distance is 300 feet or less, a collision is recorded.

The simulator is designed to test completely distributed
systems in a variety of scenarios. A central thread is used
to simulate the communication framework that would be
distributed among the aircraft in a real system. The com-
munication thread compiles and disseminates all informa-
tion to the planes, each of which runs on its own thread.
Each agent thread receives the information about its neigh-
bors, then makes a decision based on that information. The
plane then updates its heading and position and sends the
updated information back to the communication thread to
be distributed to the other planes.

6.1 Random Scenario
This scenario, based on a model in [7], reflects open airspace

with no obstacles other than other aircraft. The radius of
the world is 100 miles. Planes start at a position on a con-
centric circle with a 120 mile radius. Planes are removed
when they arrive at their destination, a specific point on the
inner circle. (The 20 mile buffer zone ensures that planes
are not involved in a conflict immediately after generation.)
The starting and destination points are chosen at random,
thus creating an even distribution over the world. Simulated
plane densities ranged from less than one plane per 10,000
square miles (5 planes total) to more than 50 planes per
10,000 square miles (80 planes total).

Table 1 shows the average results of running four simula-
tions of the ”full” model at each density, each lasting fifty
minutes. At the maximum traffic density studied by Krozel
et al. [7] of 25 aircraft per 10,000 square miles, the highest
system efficiency reported (for their centralized approach)
was approximately 97.2 percent. At that same traffic den-
sity, the best decentralized scheme had an efficiency of ap-
proximately 94.7 percent; no safety incidents were reported.
The satisficing approach results in significantly better sys-
tem efficiency as the traffic density increases.

Planes Incidents Efficiency (%)
80 .25/26 97.1
70 .25/20 97.7
60 .25/11 98.0
50 0/6 98.1
45 0/5 98.6
40 0/4 99.1
30 0/2 99.1
20 0/0 99.6

Table 1: Results for random flight scenario

6.2 Intersecting Flows
In this scenario, introduced in [8], two orthogonal traffic

flows intersect at a point. The radius of the simulated world
is 100 miles. One stream of aircraft starts at a fixed point on
the southern end of the world, and the other stream starts
at a fixed point on the western end of the world. Planes are
generated slightly over 5 miles apart to allow them to main-
tain separation while maneuvering. The two flows intersect
at a fixed point; all aircraft must cross the other traffic flow
to reach their destinations. Something similar to this geo-
metric arrangement is likely to arise in free flight as popular
routes appear dynamically. The lead planes of each stream
were generated in such a way that both would reach the
point of intersection at the same time.
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Table 2 shows average results of running five simulation
runs for each agent over a five hour period. The constant
flow scenario produces a new plane on each flow every forty
seconds, corresponding to a distance gap of over five miles.
In the remaining scenarios, occasional gaps were inserted
randomly, creating streams of consecutive planes of length
given by a gaussian random variable N (µ,∞). As the re-
sults show, the presence of even a few gaps in the otherwise
continuous flow increases both safety and efficiency. The
near miss radius in this simulation was set at five miles.

Scenario Flights Incidents Efficiency (%)
Constant Flow 97 0/29 98.2
µ = 25 97 0/26 98.8
µ = 20 94 0/24 97.4
µ = 15 93 0/6 99.8
µ = 10 87 0/4 99.7

Table 2: Results for intersecting flights

Figure 3 is a screen shot of the simulation of the satisfic-
ing algorithm. Notice the ”waves” that are formed as the
planes maneuver to safely cross the intersection point. We
note that the hard coded algorithm for this scenario as in-
troduced in [8] produces a pattern very similar to that seen
in the figure. Although it was not specifically tuned to pro-
duce these results in this situation, the satisficing algorithm
exhibits very similar behavior to that of an algorithm hard-
wired for this intersecting scenario. This emergent behavior
underscores the promise of satisficing as a solution to ATC
management.

Figure 3: Intersecting traffic (10 mile grid)

6.3 Same Point - Same Time Scenario
This scenario tests robustness more than it models reality.

Once again an open air space is created. A predetermined
number of planes are evenly distributed around the outside
of a circle with a radius of 25 miles. The destination for
these planes is the exact opposite side of the circle from
their originating position. This means all planes would pre-
fer to travel through the center of the circle, and all are set

to arrive there at the same time. Table 3 shows the results
using the “simplified” algorithm, with the near miss radius
set at five miles. The number of calculations required was
too great to run the full model within reasonable time con-
straints.

Planes Incidents Efficiency (%)
12 0/0 97.9
14 0/1 97.3
16 0/1 95.5
18 0/3 94.4
20 0/7 93.6
22 0/8 91.4
24 0/8 86.9
26 0/14 85.6
28 0/14 84.5
30 0/18 84.4
32 0/19 85.7

Table 3: Results for the choke point scenario

Figure 4 shows a series of screen shots of the scenario with
32 planes attempting to navigate the same point. Similar to
section 6.2, interesting wave-like patterns are created as the
planes attempt to navigate the dense traffic without colli-
sions.

Figure 4: Choke point (10 mile grid)

6.4 Airport Scenario
This scenario is an attempt to model actual airspace more

realistically. A predefined number of airports are generated
at the outset. A circle with a radius of 40 miles is drawn
around each airport. All airplanes coming or going from
the airport will fly at an altitude of 5,000 feet. Airplanes
that are merely passing over the airport fly at an altitude
of 30,000 feet. This is done so that planes flying through
the area will not interfere with planes during takeoff and
landing. When a plane leaves the 40 mile safety radius after
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takeoff, it is then assigned an elevation of 30,000 feet and
must interact with the other aircraft at cruising altitude. As
expected, planes that are generated at the same airport, and
then have the same destination airport, tend to fly on the
same path. This creates small ”highways” in the air that act
similarly to intersecting traffic flows. The following results
are modeled with a one mile near miss metric.

Agent Flights Incidents Delay (sec)
Full Model 1110 0/0 50
Simplified Model 1106 0/2.5 42

Table 4: Results for airport flight scenario

7. CONCLUSION
As air traffic densities continue to increase, decentral-

ized decision-making algorithms will become more impor-
tant. Such algorithms will give pilots more flexibility and
responsibility. Due to the cooperative nature of air traffic
management, an algorithm designed to work in free flight
must not be purely egotistical. Satisficing theory offers an
attractive framework within which multi-agent systems can
be designed because it provides a natural mechanism for co-
operation. Aircraft that implement a satisficing algorithm
can consider the desires of others while making their own
decisions, allowing for conditional altruism. Our simulation
experiments included a variety of scenarios, and the results
demonstrate the flexibility and performance offered by the
satisficing algorithm, obtained without sacrificing safety.
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