
Generating Vector Spaces On-the-fly
for Flexible XML Retrieval

Torsten Grabs Hans-Jörg Schek
Database Research Group, Institute of Information Systems

ETH Zentrum, 8092 Zurich, Switzerland
{grabs,schek }@inf.ethz.ch

1 Introduction

While documents are flat with conventional information retrieval, i.e., they are unstructured
information, this is no longer adequate with semistructured data such as XML for two reasons.

First, XML allows to hierarchically structure information within a document such that each
document has tree structure. Users in turn want to refer to this structure when searching for rel-
evant information. To do so, users pose so-calledcontent-and-structure queries. Such queries
refer to the document structure, e.g., by restricting the context of interest to some XML ele-
ments. Relevance ranking consequently has to properly reflect both document structure and the
constraints that the query poses on the structure. Namely, the contents at the different levels
of the tree are considered of different importance for a query. The intuition behind this is that
content that is more distant in the document tree is less important than the one that is close to
the context node. We subsequently denote this concept asnested retrieval, and it is a crucial
requirement for meaningful retrieval from XML documents. Fuhr et al. tackle this issue by
a technique denoted asaugmentation[2, 3]. The idea is to introduce so-calledaugmentation
weightsthat downweigh statistics such as inverted document frequencies of terms when the
terms are propagated upwards in the document tree. To do so, Fuhr et al. [3] group XML ele-
ment types to so-calledindexing nodesthat implement the inverted lists for efficient retrieval.
They constitute the granularity of retrieval with their approach, i.e., indexes and statistics such
as document frequencies are derived separately per indexing node. Users can search at the gran-
ularity of the indexing nodes and hierarchical combinations of them if indexing nodes are along
the same path in the document. Term weights are properly augmented in this case. The draw-
back of the approach is that the assignment of XML element types to indexing nodes is static.
Hence, users cannot retrieve dynamically, i.e., at query time, from arbitrary combinations of
element types.

The second reason why conventional retrieval techniques do not suffice for XML retrieval
is that even a single XML document may have very heterogeneous content. Take for instance

1

bookstore

medicine

book

author

. . .

book

title

. . .

example
chapter

. . .

para-
graph

title

. . .

computer science

. . .

para-
graph

author

Dat e

book

author

Rober t

title

Al gor i t hms
first-

name
last-
name

Sedge-
wi ck

book

title

. . .

example
chapter

. . .

para-
graph

. . .

para-
graph

author

I an J.
Al exander

Figure 1: Example XML document with textual content represented as shaded boxes

an XML document that contains information for tourists. One part of the document may be
devoted to restaurants while another part describes the ultimate places for sightseeing. When
posing their queries, users may want to refer to such a part, orcategory, in isolation, i.e., only
content from one category is subject to the query. We then speak of so-calledsingle-category
retrieval. With other queries in turn, users may want to process the query on several such
categories, or they do not care at all to which category the content belongs. We call these
queriesmulti-category retrieval. The difficulty with this type of queries is that common statis-
tics for information retrieval such as document frequencies must properly reflect the scope, i.e.,
the granularity, of the query. Otherwise, query processing may lead to inconsistent rankings.
Hence, a further important requirement for XML retrieval is that users can dynamically, i.e.,
at query time, define the granularity of retrieval. This is in contrast to conventional retrieval
where the retrieval granularity always is the complete document or a single field such as ’ab-
stract’ or ’title’. The following example further illustrates the shortcomings of conventional
retrieval techniques in the context of XML.

Example 1: An online store for scientific books keeps its information about books
as an XML document as the one shown in Figure 1. The document reflects the dif-
ferent categories of books such as ’medicine’ or ’computer science’ with separate
element types for the respective categories. Further, the document stores the usual
information about books such as ’author’, ’title’, ’summary’, and ’price’ (not all
of them are shown in the figure). Note that it also comprises example chapters for
some selected books.1 The document also comprises content that the users want to
access using information retrieval techniques: namely, the example chapters and
the title fields shown in the figure are of interest.

Consider now a user searching for relevant books in the ’computer science’ cat-
egory. Obviously, he restricts his queries to books from this particular category.

1This is for instance the case with the Web site of Microsoft Press (http://mspress.microsoft.com).

2

Thus, it is not appropriate to process this query with term weights derived from
both the categories ’medicine’ and ’computer science’ in combination. This is be-
cause the document frequencies in ’medicine’ may skew the term weights such that
the ranking for a query on ’computer science’ in isolation is inconsistent. Con-
sequently, term weights for this query must only be based on the content of the
’computer science’ category. Hence, we speak ofsingle-category retrieval.

Now, think of another user who does not care to which category a book belongs,
as long as it covers the information need expressed in his query. The granularity
of his query are all categories. The query is an example ofmulti-category retrieval
which requires that the statistics properly reflect the scope of the query.

Recall that both these queries search for relevant ’book’ elements. Hence, they
have to process content that is hierarchically structured: both the ’title’ elements
and the ’paragraph’ elements of the example chapters describe a particular ’book’
element. Intuitively, content that occurs in the title element is deemed more impor-
tant than that in the paragraphs of the example chapter. Consequently, both query
types also require the functionality fornested retrievaland properaugmentationas
discussed by Fuhr et al. [3]. ¦

Our aim is to provide efficient and consistentretrieval over arbitrary combinations and
nestings of element types– or briefly flexible retrievalfrom XML documents. This is chal-
lenging since common IR statistics such as element frequencies (as opposed to document fre-
quencies with conventional IR) are different depending on the scope of the query. A naive
implementation would be to keep indexes and statistics for each combination of element types
and element nestings that could possibly occur in a query. Using the terminology from Fuhr et
al. [3], each such combination would lead to a separate indexing node. However, the amount
of storage that this approach requires for indexes and statistics is prohibitively large. Hence,
it is not a viable solution. This paper in turn proposes to keep indexes and statistics only for
basic element types. When it comes to multi-category retrieval or nested retrieval, it derives
the required indexes and statistics from the underlying basic ones on-the-fly, i.e., at query run-
time. This has the advantage that the amount of storage that is needed to efficiently process
IR queries on XML content is small as compared to the naive approach. Moreover, results
from our previous work on retrieval from different categories of flat documents indicate that
the overhead on query response times with on-the-fly integration is small: it is less than 30%
with up to 16 categories as compared to a setting with pre-computed statistics [5].

In this paper, we focus on vector space retrieval and the usual TFIDF ranking. Our contribu-
tion is to dynamically derive the vector space that is appropriate for the scope of the query from
underlying basic vector spaces. In order to do so, we generalize previous work on augmenta-
tion [3] and multi-category retrieval from flat documents [5] to flexible information retrieval
on XML. We discuss the semantics of the different query types under the vector space retrieval
model and explain the algorithms required to implement efficient query processing.

The remainder of the paper is as follows: Section 2 explains the semantics of generating
vector spaces on-the-fly depending on the scope of the query. In Section 3, we propose the
algorithms that integrate indexes and statistics on-the-fly to the vector space needed to process
a given query. Section 4 discusses related work, and Section 5 concludes.

3

bookstore

medicine

book

title example
chapter

paragraph

computer science

author

book

title example
chapter

paragraph

author

e le m te rm tf
. ..

 t e r m e f

…

STAT:

IL:

e le m te r m tf
. ..

 t e r m e f

…

STAT:

IL:

e le m te r m tf
. ..

 t e r m e f

…

STAT:

IL:

e le m te r m tf
. ..

 t e r m e f

…

STAT:

IL:

0.92

1.0

0.5

0.7

0.5 0.5

0.7

1.0

0.5

0.92

Figure 2: Basic indexing nodes for the example document from Fig. 1

2 Flexible Information Retrieval from XML Documents

As motivated in the previous section, different retrieval granularities are crucial for effective
retrieval from an XML collection. To address this requirement, our approach first requires to
identify the basic element types of an XML collection that contain textual content. We denote
them asbasic indexing nodes. There are several alternatives how to derive the basic indexing
nodes from an XML collection: (1) The decision can be taken completely automatically such
that each distinct element type with textual content is treated as a separate indexing node.
(2) An alternative is that the user or an administrator decides how to assign element types to
basic indexing nodes. Both these approaches can further rely on an ontology that, for instance,
suggests to group element types ’title’ and ’abstract’ into the same basic indexing node. For the
remainder of this paper, we assume that the basic indexing nodes have already been determined.
This includes that indexes and statistics for vector space retrieval on the basic indexing nodes
have already been generated using standard IR techniques such as term extraction, stemming,
and stopword elimination.

Example 2: Consider again the online bookstore from Example 1. Figure 2 illus-
trates the basic indexing nodes for the bookstore example. For the sake of illus-
tration, the figure depicts the element types of the original document in a structure
similar to a DataGuide [4]. Element types with textual content are underlined.
Each such element type constitutes a basic indexing node and has been annotated
by an inverted list (IL) and the vector space statistics (STAT). In addition, edges are
labeled with the augmentation weights required for nested retrieval. We postpone
their explanation to our discussion of nested retrieval. ¦

Taking the basic indexing nodes as a starting point, the following paragraphs explain how
to dynamically derive the appropriate indexes and statistics for queries with arbitrary scope.

4

We start with a brief review ofsingle-category retrieval. Then, we explain how to dynami-
cally derive the indexing node data formulti-category retrievalandnested retrievalfrom the
underlying basic indexing nodes.

Single-Category Retrieval. Single-category retrieval with XML works on the element
type of a basic indexing node. For example, the path expression ’/bookstore/medicine/book/title’
defines a single category with Figure 2. The granularity of retrieval are all elements of that el-
ement type. For the moment, let us assume for ease of presentation that categories represent
those leaf nodes of the XML documents that are basic indexing nodes. We will shortly give up
this restriction.

In order to allow for relevance ranking, we take over the usual definition of retrieval sta-
tus value with the vector space retrieval model: As usual,t denotes a term, andtf (t,e) is its
term frequency with an elemente. Let Ncat andefcat(t) denote the number of elements at the
single categorycat and the element frequency of termt with the elements ofcat, respectively.
In analogy to the inverted document frequency for conventional vector space retrieval, we de-
fine inverted element frequency (ief)as iefcat(t) = log Ncat

efcat(t)
. The retrieval status value of an

elemente for a single-category queryq is then

RSV(e,q) = ∑
t∈q

tf (t,e) iefcat(t)
2 tf (t,q) (1)

Consider now the case of single-category retrieval on an inner node of the XML structure
that is not a basic indexing node. In this case, our approach derives the indexing node data of
the inner node from the underlying basic indexing nodes by applying augmentation to the term
weights, as defined by Fuhr et al. [2, 3].

Multi-Category Retrieval. In contrast to single-category retrieval,multi-category retrieval
with XML works with multi-categories. For example, the path expression ’/bookstore/medi-
cine/book/title|/bookstore/computerscience/book/title’ defines a multi-category query (cf. Fig-
ure 2). The granularity of retrieval with a multi-category are all elements that match this path
expression. Formally, a multi-category is given by a path expression that may contain choices.
When it comes to retrieval from a multi-category, statistics such as element frequencies for vec-
tor space retrieval and especially thersvmust reflect this. Otherwise, inconsistent rankings are
possible. Our approach to guarantee consistent retrieval results is similar to integrating statis-
tics for queries over different document categories with conventional retrieval [5]. We extend
this notion now such that statistics for multi-category retrieval depend on the statistics of each
single-category that occurs in the query. As the subsequent definitions show, our approach first
computes the statistics for each single-category as defined in Definition 1 and then integrates
them to the multi-category ones as follows.M denotes the set of single categories of the multi-
category.Nmcat = ∑cat∈M Ncat stands for the number of elements of the multi-category. Thus,
iefmcat(t) = log Nmcat

∑cat∈M efcat(t)
, whereefcat(t) denotes the single-category element frequency of

termt with categorycat. The retrieval status value of an elemente for a multi-category query
q is then using again TFIDF ranking:

5

RSV(e,q) = ∑
t∈q

tf (t,e) iefmcat(t)
2 tf (t,q) (2)

This definition integrates the frequencies of several single categories to a consistent global
one. It equals Definition 1 in the trivial case with only one category in the multi-category.

Nested Retrieval. Another type of requests are those that operate on complete subtress of
the XML documents. For instance, the path expression ’/bookstore/medicine/book/example-
chapter/’ defines such a subtree for the XML document in Figure 1. However, there are the
three following difficulties with this retrieval type:

• A path expression such as the one given above comprises different categories in its XML
subtree. With the element types from Figure 2 for instance, these are ’title’, and ’para-
graph’. Hence, retrieval over the complete subtree must consider these element types in
combination to provide a consistent ranking.

• Terms that occur close to the root of the subtree typically are considered more significant
for the root element than ones on deeper levels of the subtree. Intuitively: the larger the
distance of a node from its ancestor is, the less it contributes to the relevance of its an-
cestor. Fuhr et al. [2, 3] tackle this issue by so-calledaugmentation weightswhich down-
weigh term weights when they are pushed upward in hierarchically structured documents
such as XML. Thus, relevance ranking for nested retrieval must include augmentation.

• Element containment is at the instance level, and not at the type level. Consequently, ele-
ment containment relations cannot be derived completely from the element type nesting.

To define relevance ranking for nested retrieval, lete denote an element that qualifies for
the path expression of the nested-retrieval query. LetSE(e) denote the set of sub-elements ofe
includinge, i.e., all elements contained by the sub-tree rooted bye. For eachse∈ SE(e), l ∈
path(e,se) stands for a label along the path frome to se, andawl ∈ [0.0;1.0] is its augmentation
weight as defined by the annotations of the edges in the element type structure (cf. Figure 2).
cat(se) denotes the category to whichsebelongs. The category of an inner node is dynamically
generated by applying augmentation to the underlying basic indexing nodes.iefcat(se)(t) stands
for the inverted element frequency of termt with the categorycat(se). The retrieval status value
rsv of an elemente under a nested-retrieval queryq using the vector space retrieval model is
then:

RSV(e,q) = ∑
se∈SE(e)

∑
t∈q

tf (t,se)
(

∏
l∈path(e,se)

awl
)2

iefcat(se)(t)
2 tf (t,q) (3)

= ∑
se∈SE(e)

((
∏

l∈path(e,se)
awl

)2 ∑
t∈q

tf (t,se) iefcat(se)(t)
2 tf (t,q)

)
(4)

As Definition 4 shows, nested retrieval is a weighted sum of constrained single category
retrieval results. The constraint is such that an elementseand its textual content only contribute
to the retrieval status value ofe if seis in the sub-tree rooted bye. Moreover, Definition 3 and 4
revert to the common TFIDF ranking for conventional retrieval on flat documents when all
augmentation weights are equal to1.0. In the trivial case where a nested query only comprises
one single-category, Definition 3 and 4 equal Definition 1.

6

Algorithm MULTICATEGORY
Parameters: Query q, path expression p
var hits := /0; M := /0;
begin

// Step 1: Determine the single-categories and their basic indexing nodes for p
M = LookUp(p)

// Step 2: Collect and integrate statistics
for each single-category cat∈M do in parallel

Get per-category statistics (efcat(t), Ncat); end ;
Compute multi-category statistics statmcat (iefmcat and Nmcat for Def. 2);

// Step 3: Execute query for each category
for each category cat∈M do in parallel

// process the query in combination with the integrated statistics
hits := hits ∪ Querymcat(cat, q, statcat); end ;

// Step 4: Post-processing and output of results
Sort hits by RSV; Return the ranking (element id and RSV);

end ;

Figure 3: AlgorithmMULTICATEGORY for multi-category query processing

3 Implementing Flexible Retrieval from XML
Documents

In the following paragraphs, we explain how to implement multi-category retrieval and nested
retrieval using the data of the basic indexing nodes.

Multi-Category Retrieval. Using the statistics of the basic indexing nodes directly for
multi-category retrieval is not feasible since statistics are per element type. Hence, query
processing must dynamically integrate the statistics if the query encompasses several cate-
gories. Using single-category statistics directly may lead to wrong rankings with multi-category
queries. Multi-category queries compute the correct multi-category statistics during query pro-
cessing. AlgorithmMULTICATEGORY shown in Figure 3 reflects this. First, it determines
the basic indexing nodes contained in the path expression of the multi-category query. Its
second step is to retrieve the statistics for each such basic indexing node and to use them to
compute the integrated ones. The third step executes the lookup in parallel at the inverted lists.
The inverted list lookup takes the integrated multi-category statistics as input parameter and
computes the partial ranking. The fourth step ofMULTICATEGORY integrates the partial
results from the third step and returns the overall ranking.

Nested Retrieval. As with the previous retrieval type, nested retrieval requires integrating
statistics and processing queries over different indexes. In addition, it must also reflect element

7

Algorithm NESTEDRETRIEVAL
Parameters: Query q, path expression p
var hits := /0; N := /0;
begin

// Step 1: Determine the single-categories and their basic indexing nodes from p
N = LookUp(p)

// Step 2: Compute the integrated statistics with augmented weights
// W (STATcat,∏l∈path(base(p),cat) awl) denotes the weighted projection of the per-category statistics
// base(p) denotes the element type of the query root
for each category cat∈N do in parallel

STATtemp:= STATtemp∪ W (STATcat,∏l∈path(base(p),cat) awl) end ;

// Step 3: Process the query on each category with the augmented statistics
for each category cat∈N do in parallel

hits := hits ∪ Queryncat(q, STATtemp); end ;

// Step 4: Post-processing and output of results
Sort hits by RSV; Return the ranking (element id and RSV);
end ;

end ;

Figure 4: AlgorithmNESTEDRETRIEVAL for nested-retrieval processing

containment and augmentation weights properly. This makes processing of this query type
more complex than with the other types.

Our algorithm to process nested queries is calledNESTEDRETRIEVAL , and it comprises
four steps, as shown in Figure 4. The first step computes the categories that qualify for the
path expression defining the scope of the nested query. The second step then iterates over the
categories, their underlying basic indexing nodes, and dynamically generates the statistics for
the appropriate vector space of the scope of the query.

Note that the dynamically generated statisticsSTATtempcomprise different inverted element
frequencies (ief) for the same term depending on the category where the term occurs and the
weight of the category. The weighting functionW augments each termt ∈ q from the statistics
STATcat with its proper augmentation weights regarding the context node of the query. This
ensures that the properly augmentediefs are used to compute thersv. The last step of the
algorithm then computes the overall ranking.

4 Related Work

As a first measure to enhance functionality for document centric processing of XML, Florescu
et al. realize searching for keywords in textual content of XML elements [1]. However, the
mere capability to search for keywords does not suffice to address the requirements for doc-

8

ument centric processing: support for state-of-the-art retrieval models with relevance ranking
is needed. To tackle this issue, Theobald et al. propose the query language XXL and its im-
plementation with the XXL Search Engine [6]. Regarding statistics such as inverted document
frequencies (idf) their approach treats XML documents as flat structures. Fuhr et al. have al-
ready argued in [2, 3] that this comes too short for semi-structured data such as XML. They
propose to downweigh terms by so-called augmentation weights when the terms are propagated
upwards in the document hierarchy. However, their approach groups element types to so-called
indexing nodes which constitute the basis for statistics such asidf . Hence, consistent retrieval
is only feasible at the granularity of indexing nodes and hierarchical combinations of them.

Our approach takes over these ideas and generalizes them such that consistent retrieval with
arbitrary query granularities, i.e., arbitrary combinations of element types, is feasible. This
makes the restriction of retrieval granularity to indexing nodes obsolete and allows for flexible
retrieval from XML collections.

5 Conclusions

Flexible retrieval is crucial for document centric processing of XML. Flexible retrieval means
that users may dynamically, i.e., at query time, define the scope of their queries. So far, con-
sistent retrieval on XML collections has only been feasible at fixed granularities [3, 6]. The
difficulty is to treat statistics such as document frequencies properly in the context of hierar-
chically structured data with possibly heterogeneous contents. Our approach in turn allows for
flexible retrieval over arbitrary combinations of element types. In this paper, we proposesingle-
category retrieval, multi-category retrieval, andnested retrievalfor flexible retrieval from XML
documents. To tackle the aforementioned difficulty, we rely on basic index and statistics data
and integrate them on-the-fly, i.e., during query processing, into a consistent view that properly
reflects the scope of the query. Taking the vector space retrieval model for instance, our ap-
proach dynamically generates the appropriate vector space for each query from the underlying
basic ones. A nice characteristic of our approach is that it covers conventional retrieval on flat
documents as a special case.

An extensive experimental evaluation has already investigated dynamically integrating statis-
tics for different categories of flat documents [5]. Our findings from this previous work show
that the overhead of dynamic statistics integration is less than 30% with up to 16 different cat-
egories, compared to a setting with pre-computed statistics. We are currently extending the
implementation of our XML repository with the functionality for flexible retrieval on XML
documents and the algorithms for multi-category and nested retrieval as outlined in this paper.
Our expectation is that the overhead for generating appropriate vector spaces on-the-fly is also
reasonable for retrieval on XML documents such that we can guarantee interactive retrieval
response times.

9

References

[1] D. Florescu, D. Kossmann, and I. Manolescu. Integrating Keyword Search into XML
Query Processing. InProc. of the Intern. WWW Conference, Amsterdam, May 2000. Else-
vier, 2000.

[2] N. Fuhr, N. G̈overt, and T. R̈olleke. Dolores: A system for logic-based retrieval of multi-
media objects. InProceedings of the 21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, 1998, Melbourne, Australia, pages
257–265. ACM Press, 1998.

[3] N. Fuhr and K. Großjohann. XIRQL: A Query Language for Information Retrieval in XML
Documents. InProceedings of the 24th Annual ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 172–180. ACM Press, 2001.

[4] R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases. InProceedings of 23rd International Conference on Very Large
Data Bases, 1997, Athens, Greece, pages 436–445. Morgan Kaufmann, 1997.

[5] T. Grabs, K. B̈ohm, and H.-J. Schek. PowerDB-IR – Information Retrieval on Top of
a Database Cluster. InProceedings of the Tenth International Conference on Information
and Knowledge Management (CIKM2001), November 5-10, 2001 Atlanta, GA, USA. ACM
Press, 2001.

[6] A. Theobald and G. Weikum. The Index-Based XXL Search Engine for Querying XML
Data with Relevance Ranking. InAdvances in Database Technology - EDBT 2002, 8th
International Conference on Extending Database Technology, Prague, Czech Republic,
volume 2287 ofLecture Notes in Computer Science, pages 477–495. Springer, 2002.

10

