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Abstract. For a fmite ordered set P, let c(P) denote the cardinality of the largest subset Q such that 
the induced suborder on Q satisfies the Jordan-Dedekind chain condition (JDCC), i.e., every maximal 
chain in Q has the same cardinality. For positive integers n, let be the minimum of c(P) over all 
ordered sets P of cardinahty n. We prove: &r - 1 <f(n) < 4e 
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For a finite ordered set P, let c(P) denote the size of the largest subset Q such that Q 
with the induced order satisfies the Jordan-Dedekind chain condition (JDCC), i.e., every 
maximal chain in Q has the same cardinality. We consider the question, in terms of the 
cardinality of P, how small can c(P) be? For positive integers 11, let f(n) be the minimum 
of c(P) over all ordered sets P of cardmality K j(n) is trivially at least &, since every 
ordered set on n elements has either a chain or antichain of cardinality 6 (a simple 
consequence of Dilworth’s theorem [l]). We prove: 

THEOREM 1. & - 1 <j(n) < 4e& for aZ1 n. 

Before giving the proof, let us mention that this is an example of a wide variety of ques- 
tions of the form: given a ‘nice’ class of ordered sets and given an arbitrary ordered set P, 
how large an induced suborder must P have that belongs to this class. Another such ques- 
tion (to which we do not know any nontrivial bounds) arises if we take the class to be the 
ordered sets of dimension two. Similar questions have been studied in the context of 
graphs and we believe it to be worthwhile to consider such questions for ordered sets. 
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The remainder of this paper is devoted to proving Theorem 1. The lower bound of 
the theorem is a strengthening of the observation which gave the dn lower bound. Let 
A be a largest antichain of P and let B be a largest antichain of P-A. Then every element 
of B is related to some element of A (otherwise A is not maximal). Let A’ be the subset 
of .4 consisting of all elements that are related to some element of B; 1 A’1 > 1 B I, other- 
wise B U (..-A’) is a larger antichain than A. Hence, B U A’ is a height one poset with 
no isolated elements (thus satisfying JDCC) having cardinality at least 2 1 B 1. If 2 1 B I> 
6-l or lAl>fi-l then c(P)>d%-1 so suppose IA]<&-1 and 
1 B 1 < (A/&$ - i. Then P-A has cardinality greater than n - 6 t 1 and no anti- 
chain of size (6/h) - i, so it has a chain of size (n - 6 + l)/(&& - i) > 6 - 1, 
which completes the proof of the lower bound. 

We now proceed to the upper bound. The proof we present is nonconstructive; we 
show that for every n there exists a poset on n elements so that every subposet of size 
greater than 4e & does not satisfy JDCC. 

Let u be a permutation of [n] (= { 1, 2, . ., n}). The permutation order P(u) associ- 
ated with u is defmed on the set {xi , . . , X~ } by xi <xi if i < j and u(i) < u(j). (The 
class of permutation orders is equivalent to the class of two-dimensional orders and has 
been studied extensively.) It will be convenient to view a permutation u as a sequence 

41, G9, . . . . u(n). By a subsequence of u we mean a sequence u(il), u(&), . . . . u(ik) 
where il < iZ < *.. < ik. Observe that the induced suborders of P(u) are associated to 
subsequences of u and are themselves permutation orders. We will say that a permutation 
u (or more generally, a subsequence u(il), u(&), . . . , u(ik)) is JDCC if the associated 
permutation order (or induced suborder) satisfies JDCC. We let g(n) denote the number 
of permutations of [n] satisfying JDCC. 

We will prove 

THEOREM 2. For any m > 4e& there exists Q permutation order on n elements 
such that any induced suborder of size m or greater fails to satisfy JDCC, and therefore 
f(n) < 4eG. 

The proof of Theorem 2 is based on two lemmas. 

LEMMA 3. Zf for every permutation u of n, P(u) has an induced suborder of size at least 
m satisfying JDCC then: 

LEMMA4. Forallm,g(m)< 16m. 

To see that Lemmas 3 and 4 imply Theorem 2, suppose that every permutation order of 
size n has an induced suborder satisfying JDCC of size at least m. Then by Lemmas 3 and 
4: 
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Using the inequalities n !/(n - j)! < nj andj! > jj”/ej, we obtain: 
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If tn > 4e&, each summand is less than l/m and the sum is less than (m - 1)/m, a 
contradiction establishing f( n) < 4e &. 

Proof of Lemma 3. We begin with a 

Claim. If P has an induced suborder of size at least m satisfying JDCC, then it has such 
an induced suborder of size between m and 2m - 2. 

To see this, let Q be the smallest induced suborder of P satisfying JDCC and having 
size at least m. Assume 1 Q I> m; by minimality of Q it is not an antichain. Let jk! be the 
set of minimal elements of Q. Then Q #&f and both&f and Q-M satisfy JDCC, so by the 
choice of Q, 1 M 1 < m and ] Q-M ] < m, and so ] Q I< 2m - 2. This establishing the claim. 

Now let u be a random permutation of n elements (each permutation is chosen with 
probability l/n!). For a given index set iI < iz < ... <ii the probability that the induced 
suborder corresponding to u(iI ), u(&), . . . , u(ij) satisfies JDCC is g(j)/j!. Thus the 

probability that u has a subsequence of size j satisfying JDCC is at most [I ; km/l.!. 
If each permutation order of size n has an induced suborder of size at least m satisfying 
JDCC, then by the above claim, a random permutation contains a subsequence satisfying 
JDCC of size between m and 2m - 2 with probability 1. Hence 

Proof of Lemmu 4. To bound g(n), we fast need to characterize permutations satisfying 
JDCC. Note that a chain in P(u) corresponds to an increasing subsequence of u. Define 
c(i; u) to be the length of the longest increasing subsequence of u ending with u(i), that 
is,c(i; u)=max{kl there existsir <iz < .*.<ik =i such that u(iI)< *.~<u(i~)}. 

Note that an increasing subsequence in u in positions i, < iz < ... < ik corresponds to 
an increasing subsequence in u-l in positions u(ir ) < ... < u(ik). In particular, we have 

c(i; u) = c(u(i); u-l). (*I 

The function c(i; u) plays a key role in work of Shensted [4] and Greene [3] concerning 
Young tableau and permutations. The following lemma is implicit in their work. 

LEMMA 5. Every permutation u is determined uniquely by the functions c(i; u) and 
c(i, u-l). 

&oofi Given the functions c(i; u) and c(i; u-i), we show how to reconstruct u. Fix 
k < n and let iI < iz < ... <i, (resp. jr < ... < js) be the set of indices i such that 
c(i; u) = k (resp. c(i; u-i) = k). By (*), u maps the set {ii , . . ., i,} bijectively to the set 
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G r , . . . , js}, so in particular, r = s. Moreover, we must have u(i,,) < u(i,, - I) < . .. < u(iI) 
since u(it) < u(it+I) would imply c(it+I; u) > c(it; u). Thus u(iI) = jr, u(i*) =jrpI, 

. . . . u(&) =jr . Doing this for all Ic e [n] determines u uniquely. cl 

A function o : [n] + [n] will be said to be udmissible if o(1) = 1 and cx(i) < a(i - 1) + 1 
for2GiGn. 

LEMMA 6. If u is JDCC then c(i; u) and c(i; u-l) are both admissible. 
&oofi Suppose u is JDCC. Clearly ~(1; u)=l. c(i; u)<c(i- 1; u)+ 1 is trivial if 

u(i) < u(i - 1). If u(i) > u(i - 1) then u(i - 1) and u(i) are contained together in some 
maximal (hence, maximum) increasing subsequence. The portion of this sequence ending 
with u(i) has length c(i; u) (otherwise we could construct a larger maximal chain). 
Hence, c(i; u)< c(i - 1; u) + 1 and c(i; u) is admissible. If u is JDCC then so is u-l 
(sinceP(u) andP(u-‘) are isomorphic), so c(i; u-r) is admissible. 0 

Thus, by Lemmas 5 and 6, g(H) is bounded by the number of pairs o, /I of admissible 
functions of [n], i.e., the square of the number of admissible functions, so Lemma 4 
follows if we show that there are at most 4n admissible functions of n. Associate to 
any function o: [n] -+ [n] the function 7 given by y(i) = 1 + a(i) - cx(i + 1) if 1 <i < 
n - 1 and y(n) =a(n). Then ~(1) + ~(2) t .**t T(n) =n, o is determined by 7, and o 
is admissible if and only if 7 is nonnegative. Hence, the number of admissible functions 
equals the number of nonnegative sequences 7(l), y(2), . . . . T(n) which sum to n. Ele- 

mentary enumeration yields that there are , which is less than 4’. 
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