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ABSTRACT

Let F be an n-vertex forest. An edge e /∈ F is said to be in F ’s shadow

if F ∪ {e} contains a cycle. It is easy to see that if F is an “almost tree”,

i.e., a forest that contains two components, then its shadow contains at

least � (n−3)2

4
� edges and this is tight. Equivalently, the largest number

of edges in an n-vertex cut is �n2

4
�. These notions have natural analogs

in higher d-dimensional simplicial complexes which played a key role in

several recent studies of random complexes. The higher-dimensional sit-

uation differs remarkably from the one-dimensional graph-theoretic case.

In particular, the corresponding bounds depend on the underlying field

of coefficients. In dimension d = 2 we derive the (tight) analogous theo-

rems. We construct 2-dimensional “Q-almost-hypertrees” (defined below)

with an empty shadow. We prove that an “F2-almost-hypertree” can-

not have an empty shadow, and we determine its least possible size. We

also construct large hyperforests whose shadow is empty over every field.

For d ≥ 4 even, we construct a d-dimensional F2-almost-hypertree whose

shadow has vanishing density.

Several intriguing open questions are mentioned as well.

1. Introduction

This article is part of an ongoing research in the field of “high-dimensional

combinatorics”. This research program starts from the observation that a graph

can be viewed as a 1-dimensional simplicial complex, and that many basic

concepts of graph theory, such as connectivity, forests, cuts, cycles, etc., have

natural counterparts in the realm of higher-dimensional simplicial complexes.

As may be expected, higher-dimensional objects tend to be more complicated

than their 1-dimensional counterparts, and many fascinating phenomena reveal

themselves from the present vantage point (see, e.g., [6, 10, 8, 4]). In this

paper we study several extremal problems in this domain, and, in particular,

we investigate the possible sizes of shadows and, equivalently, hypercuts of

simplicial complexes. These concepts are based on homology theory, but they

can be understood by means of standard linear algebra (see Section 2).

Let X be an n-vertex d-dimensional simplicial complex with a full skeleton,

i.e., every face of dimension smaller than d belongs to X .
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Pick a field F and define SH(X ;F), the F-shadow of X , as the set of all

d-simplices σ /∈ X such that Hd(X ;F) is a proper subspace of Hd(X ∪ {σ};F).
Here Hd(·) denotes the d-dimensional homology, the kernel of the boundary

operator ∂d(X).

Shadows have recently played a significant role in the theory of random sim-

plicial complex, specifically in the Linial–Meshulam binomial model Yd(n, p) of

random simplicial complexes. In light of the classical Erdős–Rényi work, it is

very natural to seek a high-dimensional analog of the phase transition and the

emergence of the giant component that occurs in G(n, p) at p = 1
n . A major

obstacle is that there is no high-dimensional notion of a connected component,

but, as discovered in [8], rather than considering a giant component it is possi-

ble to observe the emergence of a giant shadow. In the case of graphs (d = 1)

the two concepts are equivalent, but whereas there is no good notion of con-

nected components in higher dimensions, shadows make sense in all dimensions.

Moreover, it turns out that the density of the Q-shadow of the random simpli-

cial complex undergoes a discontinuous phase transition exactly when the first

nontrivial d-cycle appears. Quantitatively, at the phase transition of the Linial–

Meshulam complex, the size of the Q-shadow jumps from Θ(n) to Θ(nd+1) with

the addition of only o(nd) new d-faces. A motivating question for this work is

how fast the shadow’s size can jump. In particular, can the density of the

shadow jump from 0 to 1 with the addition of a single new d-face?.

In addition, F-shadows were crucial in studying the threshold for the inte-

gral homological connectivity of a random Yd(n, p) complex [5, 9]. Recall that

the (d − 1)-homology of a d-complex X with a full skeleton is the quotient

Im∂d/Im∂d(X) (see Section 2). The F-shadow of X can be equivalently defined

by the set of d-simplices σ /∈ X such that

Hd−1(X ;F) = Hd−1(X ∪ {σ};F).
The standard way of quantifying the fact that Yd(n, p) is far from having a

trivial (d− 1)-homology is by studying its Betti numbers. The results in [5, 9]

indicate that a better means to this end is to consider the size of its shadow.

This is founded on the fact that Hd−1(X ;F) is trivial if and only if X has a full

F-shadow, i.e.,

|SH(X ;F)|+ |X | =
(

n

d+ 1

)
,

where X is an n-vertex d-complex with a full skeleton, and its size |X | is the

number of d-faces in X .
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This naturally suggests the question whether Hd−1(X ;F) is “small” if and

only if SH(X ;F) is “large”. One implication does hold, and follows from Björner

and Kalai’s [1]. Namely, for every integer k ≤ n, if |SH(X ;F)| + |X | ≥ (
k

d+1

)
then

dim(Hd−1(X ;F)) ≤
(
n− 1

d

)
−
(
k − 1

d

)
,

and this bound is tight. However, as we show here, the reverse implication

fails. We present several constructions of simplicial complexes with a small

(d− 1)-homology, shadow and size.

Let us recall some further basic terminology. A d-complex X is d-acyclic

over F ifHd(X ;F) is trivial. A (d−1)-face τ in a d-complexX is called exposed

if it is contained in exactly one d-face σ of X . In the elementary d-collapse

on such τ we remove τ and σ from X . We say that X is d-collapsible if it is

possible to eliminate all the d-faces of X by a series of elementary d-collapses.

It is easy to see that a d-collapsible complex is d-acyclic over every field.

The search for d-complexes with small (d−1)-homology, shadow and size can

be restricted to d-acyclic complexes. Indeed, every d-complexX can be replaced

by an inclusion-maximal d-acyclic subcomplex X ′ ⊆ X . These complexes have

the same (d− 1)-homology and |X |+ |SH(X ;F)| = |X ′|+ |SH(X ′;F)|.
Kalai [6] introduced the concept of a d-hypertree over F. This is a max-

imal n-vertex d-complex with a full skeleton which is d-acyclic over F. A d-

hypertree has exactly
(
n−1
d

)
d-faces, and, in addition, every n-vertex d-acyclic

d-complex with this number of d-faces is a d-hypertree. Because d-hypertrees

have a trivial (d−1)-homology and thus a full shadow, they are not useful for us.

However, a slight modification significantly changes the game. A d-hypertree

from which one d-face is removed is called a d-almost-hypertree. For ex-

ample, a d-collapsible complex with
(
n−1
d

)− 1 d-faces is an almost-hypertree

over every field. Clearly, the (d − 1)-homology of a d-almost-hypertree is only

one-dimensional, but how small can its shadow be?

Let us illustrate with some concrete examples.

Example 1.1 (d = 1): In the one-dimensional case, a 1-hypertree is a spanning

tree and a 1-almost-hypertree is a forest F with two connected components

A ∪B = V (F ). Its shadow is comprised of all pairs of vertices within the same

connected component, and its size is
(|A|

2

)
+

(|B|
2

) − (n − 2) ≥ (12 − o(1))
(
n
2

)
,

where n = |V (F )|.
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Figure 1. The triangulations M5 and M6 of the Möbius band.

Example 1.2 (d = 2, n = 5, an optimal construction): Consider the 5-vertex

triangulationM5 of the Möbius strip in Figure 1(a) and an arbitrary field F. The

1-skeleton ofM5 is full, and its triangular faces are the 5 arithmetic progressions

of the form {x, x + 1, x + 2} in Z5. It is easy to see that M5 is 2-collapsible

with
(
5−1
2

) − 1 triangular faces, i.e., it is a 2-collapsible almost-hypertree. In

addition, for every triangle σ /∈ M5, the complex M5 ∪ {σ} is also 2-collapsible,

hence SH(M5;F) = ∅.
Example 1.3 (d = 2, n = 6, dependence on the field): Consider the 6-vertex

triangulation M6 of the Möbius strip in Figure 1(b). As before, M6 is a 2-

collapsible almost-hypertree. The complex M6 ∪ {σ}, where σ = {4, 5, 6}, is
the 6-vertex triangulation of the real projective plane. For all other triangles

τ /∈ M6, the complex M6 ∪ {τ} is 2-collapsible. Consequently, SH(X ;F) is not

empty if and only if the field F has characterisitc 2.

Here is a summary of the results and constructions presented in this paper:

(I) We show that for certain integers n, there exists a 2-dimensional almost-

hypertree with an empty shadow over Q. Moreover, assuming a well-

known conjecture by Artin in number theory,there are infinitely many n.

(II) Over the field F2, surprisingly, the situation changes. There are no

shadowless 2-almost-hypertrees, but the least possible size of the shadow

of a 2-almost-hypertree is n2

4 +Θ(n).

(III) For the same question in dimension d > 2 over F2, the answer depends

on d’s parity. For odd d every d-almost-hypertree has a shadow of

positive density. For even d there are d-almost-hypertrees with a shadow

of vanishingly small density.
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(IV) For odd n, we construct 2-acyclic simplicial complexes with

(
n− 1

2

)
− (n+ 1)

two-faces that are shadowless over every field. Moreover, these com-

plexes are 2-collapsible even after the addition of an arbitrary new two-

face. In consequence, for every field F the density of the F-shadow can

jump from 0 to 1 with the addition of n+ 1 2-faces.

Perfect hypercuts—a different perspective. The theory of simplicial

matroids (see, e.g., [3]) suggests a different perspective to the above results

which is more useful when working over the field F2. The elements of the

simplicial matroid with parameters n,d integers and a field F are all the possible

d-faces over n vertices. A set S of d-faces is said to be independent if the d-

complex that consists of S and the full (d− 1)-skeleton is d-acyclic over F. The

bases of the simplicial matroid are d-hypertrees over F, and the shadow of a

d-complex is closely related to its closure. For instance, a closed set in the

simplicial matroid is a shadowless complex.

The standard concept of a cocircuit in matroid theory leads to the following

definiton. A d-hypercut over F is an inclusion-minimal set of d-faces that

intersects every d-hypertree. Note that a 1-hypercut is a graphical cut, namely

all the edges connecting a subset of the vertices and its complement. Therefore,

an almost tree, i.e., a forest F with two trees, uniquely defines the cut consisting

of those edges that join vertices of the two connected components of F . As we

show in the sequel, the general d-dimensional situation is essentially the same.

Lemma 1.4: Let n > d be integers and F a field. A set C of d-faces on n

vertices is a d-hypercut over F if and only if there exists a d-almost-hypertree

X over F such that

C =

(
[n]

d+ 1

)
\
(
X

⋃
SH(X ;F)

)
.

Here
(
[n]
d+1

)
denotes all the d-faces over n vertices. We postpone the proof to

Section 2.

It follows that the size of a d-hypercut is at most
(

n
d+1

)− (
(
n−1
d

)− 1) and the

bound is attained if and only if there exists a shadowless d-almost-hypertree.

We say that a d-hypercut of this size is perfect.
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Note that all 1-dimensional cuts are far from being perfect. The largest size

of a cut in an n-vertex graph is �n2

4 	, whereas the bound given in the lemma

is
(
n
2

)− n+ 2. The results of this paper, stated in terms of hypercuts, reveal a

completely different situation in higher dimensions .

(I′) Perfect 2-hypercuts over Q exist for certain integers n, and assuming

a well-known number-theoretic conjecture of Artin, there are infinitely

many such n.

(II′) There are no perfect 2-hypercuts over F2 for large n. The largest possi-

ble 2-hypercut has
(
n
3

)− 3
4n

2 −Θ(n) faces. All the extremal hypercuts

are characterized.

(III′) For F = F2 and d > 2, the situation depends on d’s parity. Namely, for

d even, the largest d-hypercuts have
(

n
d+1

) · (1 − on(1)) d-faces. When

d is odd, the density of all d-hypercuts is bounded away from 1.

Since the notions of shadow and hypercut are formally equivalent (Lemma

1.4), we will opt in each case for the terminology that seems better suited for

the context. The rest of the paper is organized as follows. In Section 2 we

introduce the necessary notions in the combinatorics of simplicial complexes.

Section 3 deals with the problem of a shadowless 2-almost-hypertree over Q. In

Section 4 we study the problem of a maximal 2-hypercut over F2. In Section 5 we

construct large d-hypercuts over F2 for even d ≥ 4, and show the impossibility

of similar constructions for odd d. In Section 6 we construct large acyclic

shadowless 2-dimensional complexes over every field. Lastly, in Section 7 we

present some of the many open questions in this area.

2. Background on simplicial combinatorics

All simplicial complexes considered here have vertex set V = [n] = {1, . . . , n}
or V = Zn. A simplicial complex X is a collection of subsets of V that is

closed under taking subsets. Namely, if σ ∈ X and τ ⊆ σ, then τ ∈ X as well.

Members of X are called faces or simplices. The dimension of the simplex

σ ∈ X is defined as |σ| − 1. A d-dimensional simplex is also called a d-simplex

or a d-face for short. The dimension dim(X) is defined as max dim(σ) over

all faces σ ∈ X , and we also refer to a d-dimensional simplicial complex as a

d-complex. The size |X | of a d-complex X is the number of d-faces in X .
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The collection of the faces of dimension ≤ t of X , where t < d, is called

the t-skeleton of X . We say that a d-complex X has a full skeleton if its

(d− 1)-skeleton contains all the faces of dimensions at most (d− 1) spanned by

its vertex set. If X has a full skeleton, the complement X̄ is defined by taking

a full (d− 1)-dimensional skeleton and those d-faces that are not in X .

The permutations on the vertices of a face σ are split in two orientations

of σ, according to the permutation’s sign. The boundary operator ∂ = ∂d

maps an oriented d-simplex σ = (v0, . . . , vd) to the formal sum

∂σ =

d∑
i=0

(−1)i(σ \ vi),

where σ \ vi = (v0, . . . , vi−1, vi+1, . . . , vd) is an oriented (d− 1)-simplex.

We fix some field F and linearly extend the boundary operator to free F-sums

of simplices. Here we mostly consider F = Q or F2. We consider the
(
n
d

)×(
n

d+1

)
matrix form of ∂d by choosing arbitrary orientations for (d − 1)-simplices and

d-simplices. Note that changing the orientation of a d-simplex (resp. d − 1-

simplex) results in multiplying the corresponding column (resp. row) by −1.

Thus the d-boundary of a weighted sum of d simplices, viewed as a vector z (of

weights) of dimension
(

n
d+1

)
, is just the matrix-vector product ∂dz.

We denote by ∂d(X) the submatrix of ∂d restricted to the columns associated

with d-faces of a d-complexX . We occasionally use the notation ∂d(A), where A

is a subset of the d-faces rather than ∂d(X). This creates no problem for X that

has a full skeleton. We observe that the matrix ∂d has rank
(
n−1
d

)
, regardless

of the choice of field. We define the rank of a d-complex X by rank(∂d(X)).

The d-homology of X , denoted by Hd(X ;F), is the right kernel of the matrix

∂d(X). An element inHd(X ;F) is also called a d-cycle. The (d−1)-th homology

of X , denoted by Hd−1(X ;F), is the quotient Im∂d / Im∂d(X).

Let us recall the main concepts used in this paper. A d-hypertree X over the

field F is a d-complex of size
(
n−1
d

)
with a trivial d-dimensional homology over F.

This means that the columns of the matrix ∂d(X) form a basis for the column

space of ∂d. It is easily verified that a d-hypertree has a full skeleton. A d-

almost-hypertree is a d-complex of size
(
n−1
d

)−1 with a trivial d-homology over

F. The F-shadow of a d-complex Y is comprised of all d-faces σ /∈ Y such that ∂σ

is linearly spanned over F by the columns of ∂d(Y ). Equivalently, σ ∈ SH(Y ;F)

if and only if adding σ to Y does not increase its rank. Lastly, a d-hypercut is

an inclusion-minimal set of d-faces that intersects every d-hypertree.
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We now prove Lemma 1.4, which shows the equivalnce between shadows of

d-almost-hypertrees and d-hypercuts.

Proof of Lemma 1.4. Everything is done over F. We show first that if

C =

(
[n]

d+ 1

)
\
(
X

⋃
SH(X ;F)

)
,

where X is a d-almost-hypertree, then C is a d-hypercut. This entails two

things:

(1) That C meets every d-hypertree, or in other words, that X
⋃

SH(X ;F)

contains no d-hypertree, which is clear since its rank is only
(
n−1
d

)− 1.

(2) That for every proper subset C′ � C there is a d-hypertree that is

disjoint from C′. Indeed, if C′ ⊆ C \ σ, then X ∪ {σ} is clearly disjoint

from C′. Also, X∪{σ} is a d-hypertree, sinceX is an almost d-hypertree

and σ is not in its shadow.

Now for the reverse implication: Let C be a d-hypercut and let X be an

F-basis for the set of all the d-faces that are not in C. We claim that X is a

d-almost-hypertree. Since X is d-acyclic, it remains to show that

|X | =
(
n− 1

d

)
− 1.

Clearly |X | < (
n−1
d

)
, or else X is a d-hypertree that is disjoint from the d-

hypercut C. If |X | ≤ (
n−1
d

) − 2, then the collection of all d-faces that are not

in C has rank ≤ (
n−1
d

) − 2, which implies that every hypertree has at least

two d-faces in common with C. This, however, contradicts the minimality of

C. It remains to prove that the F-shadow of X is disoint from C. Indeed, if

σ ∈ C ∩SH(X ;F) then C \ σ intersects every d-hypertree which contradicts the

minimality.

There is another useful characterization of d-hypercuts. Recall that the row

space of the
(
n
d

) × (
n

d+1

)
matrix ∂d is the linear space Bd of d-coboundaries.

A set C of d-faces intersects every d-hypertree if and only if the rank of its

complement C̄ is strictly smaller than
(
n−1
d

)
. This is equivalent to the existence

of a non-zero d-coboundary that is supported on C. Therefore, C is a d-hypercut

if and only if it is an inclusion-minimal support of a d-coboundary.
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Here are some additional concepts needed for the proofs in the paper. If σ is

a face in a complex X , we define its link via

linkσ(X) = {τ ∈ X : τ ∩ σ = ∅, τ ∪ σ ∈ X}.

This is clearly a simplicial complex. For instance, the link of a vertex v in a

graph G is v’s neighbour set which we also denote by NG(v) or N(v).

We occasionally call a set of d-simplices a d-cycle or a d-coboundary if it is

the support of a d-cycle or a d-coboundary. Over F2 this makes no difference,

since a vector over F2 is naturally identified with its support. In this case, a

d-coboundary C consists of the d-faces whose boundary has an odd intersection

with some set A of (d − 1)-faces. A convenient way to generate a given d-

coboundary C is to let A be the (d− 1)-faces in linkv(C) for some vertex v, i.e.,

it holds that

C = linkv(C) · ∂d.
In words, the characteristic (row) vector of the d-faces of C is equal to the

vector-matrix left product of the characteristic (row) vector of the (d− 1)-faces

of linkv(C) with the boundary matrix ∂d. Indeed, one needs to verify that a

d-face σ belongs to C if and only if the number of the (d − 1)-faces of σ that

are in linkv(C) is odd. In case v ∈ σ, linkv(C) contains the (d− 1)-face σ \ {v}
if and only if σ ∈ C, and does not contain other (d − 1)-faces of σ. Otherwise,

in case v /∈ σ, the number of d-faces in the (d + 1)-face σ ∪ {v} that belong to

C is even, since C is a d-coboundary and

∂d∂d+1 = 0.

Therefore, σ ∈ C if and only if the number of d-faces of σ ∪ {v} that belong to

C other than σ is odd. This concludes the argument since the latter equals the

number of the (d− 1)-faces of σ that belong to linkv(C).

In the 2-dimensional case over the field F2, there is a combinatorial property

that characterizes whether the link graph G = linkv(C) generates a 2-hypercut

C rather than a general 2-coboundary. Two incident edges uv,uw in a graph

G = (V,E) are said to be Λ-adjacent if vw /∈ E. We say that G is Λ-connected

if the transitive closure of the Λ-adjacency relation has exactly one class.

Proposition 2.1 ([12]): A 2-dimensional coboundary C is a hypercut if and

only if the graph linkv(C) is Λ-connected for every v.
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3. Shadowless almost-hypertrees over Q

The main result of this section is a construction of shadowless 2-dimensional

almost-hypertrees over Q. As mentioned above, the complement of such a

complex is a perfect 2-hypercut having
(
n
3

)− (
n−1
2

)
+ 1 faces which is the most

possible.

Theorem 3.1: Let n ≥ 5 be a prime for which Z∗
n is generated by {−1, 2}. Let

X=Xn be a 2-dimensional simplicial complex on vertex set Zn whose 2-faces are

arithmetic progressions of length 3 in Zn with difference not in {0,±1}. Then:
• Xn is 2-collapsible, and hence it is an almost-hypertree over every field.

• SH(Xn;Q) = ∅. Consequently, the complement of Xn is a 2-perfect

hypercut over Q.

The entire construction and much of the discussion of Xn is carried out

over Zn, but the boundary operator ∂2(Xn) is considered over the rationals.

We start with two simple observations. First, note that Xn has a full 1-

skeleton, i.e., every edge is contained in some 2-face of Xn. Also, we note that

the choice of omitting the arithmetic triples with difference ±1 is arbitrary.

Namely, for every a ∈ Z∗
n, the automorphism r �→ ar of Zn maps Xn to a

combinatorially isomorphic complex of arithmetic triples over Zn, with omitted

difference ±a. Consequently, Theorem 3.1 holds equivalently for any difference

that we omit. In what follows we indeed assume for convenience that the missing

difference is not ±1, but rather ±2−1 ∈ Zn.

For d ∈ Z∗
n, define

Ed = Ed,n = ((0, d), (1, d+ 1), . . . , (n− 1, d+ n− 1)),

where all additions are mod n. This is an ordered subset of directed edges inXn.

Similarly, we consider the collection of arithmetic triples of difference d,

Fd = Fd,n = ((0, d, 2d), (1, d+ 1, 2d+ 1), . . . , (n− 1, d+ n− 1, 2d+ n− 1)).

Clearly every directed edge appears in exactly one Ed and then its reversal is

in E−d. Likewise for arithmetic triples and the Fd’s. Since we assume that Z∗
n is

generated by {−1, 2}, it follows that the powers {2i} ⊂ Z∗
n, i = 0, . . . , n−1

2 − 1,

are all distinct, and, moreover, no power is an additive inverse of the other.

Therefore, the sets {E2i}, i = 0, . . . , n−1
2 − 1, constitute a partition of the 1-

faces of Xn. Similarly, the sets {F2j}, j = 0, . . . , n−1
2 − 2, constitute a partition

of the 2-faces of Xn. The omitted difference is 2
n−1
2 −1 ∈ {±2−1}, as assumed

(the sign is determined according to whether 2
n−1
2 = 1 or −1).
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Lemma 3.2: Ordering the rows of the adjacency matrix MX by E2i ’s, and

ordering the columns by the F2i ’s, the matrix ∂2(Xn) takes the following form:

(1) ∂2(Xn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I +Q 0 0 · · ·
−I I +Q2 0 · · ·
0 −I

. . . · · ·
0 0

. . . I +Q2
n−1
2

−2

0 0 · · · −I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where each entry is an n× n matrix (block) indexed by Zn, and Q is a permu-

tation matrix corresponding to the linear map b �→ b+ 1 in Zn.

Proof. Consider an oriented face σ ∈ F2i ⊂ Xn. Then,

σ = (b, b+ 2i, b+ 2i+1)

for some b ∈ Zn and 0 ≤ i ≤ n−1
2 − 2, i.e., σ is the b-th element in F2i . By

definition,

∂σ = (b, b+ 2i) + (b+ 2i, b+ 2i+1)− (b, b+ 2i+1).

The first two terms in ∂σ are the b-th and (b+2i)-th elements in E2i respectively;

the third term corresponds to the b-th element in E2i+1 . Thus, the blocks

indexed by E2i × F2i are of the form I + Q2i , the blocks E2i+1 × E2i are −I,

and the rest is 0.

We may now establish the main result of this section.

Proof of Theorem 3.1. We start with the first statement of the theorem. Let

m = n−1
2 .

Lemma 3.2 implies that the edges in E2m−1 are exposed. Collapsing on these

edges leads to elimination of E2m−1 and the faces in F2m−2 . In terms of the ma-

trix ∂2(Xn), this corresponds to removing the rightmost “supercolumn”. Now

the edges in E2m−2 become exposed, and collapsing them leads to elimination

of E2m−2 and F2m−3 . This results in exposure of E2m−3 , etc. Repeating the

argument to the end, all the faces of Xn get eliminated, as claimed.

To show that Xn is an almost-hypertree we need to show that the number of

its 2-faces is
(
n−1
2

)− 1. Indeed,

|Xn| =
n−1
2 −2∑
j=0

|F2j | =
(
n− 1

2
− 1

)
· n =

(
n− 1

2

)
− 1.
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We now show the second statement of the theorem, i.e., that SH(Xn;Q) = ∅.
Let u ∈ Q(n2) be a vector indexed by the edges of Xn, where ue = 2i when

e ∈ E2i . Here we think of 2i as an integer (and not an element in Zn). We

claim that for every 2-face σ ∈ (
Zn

3

)
,

〈u, ∂σ〉 = 0 ⇐⇒ σ ∈ Xn.

Indeed, for every 2-face σ, exactly three coordinates in the vector ∂σ are

non-zero, and they are ±1. Since the entries of u are successive powers of 2,

the condition 〈u, ∂σ〉 = 0 holds if and only if ∂σ (or −∂σ) has two 1’s in E2i

and one −1 in E2i+1 for some 0 ≤ i ≤ n−1
2 − 1. This happens if and only if σ

is of the form (b, b+ 2i, b+ 2i+1), i.e., precisely when σ ∈ Xn.

Suppose, in contradiction, that there exists σ′ ∈ SH(Xn;Q), i.e.,

∂σ′ =
∑

σ∈Xn

λσ∂σ,

where the λσ’s are rational scalars. A contradiction follows by taking the inner

product of these two vectors with u.

When the prime n does not satify the assumption of Theorem 3.1 we can still

say something about the structure of Xn. Let the group Gn = Z∗
n/{±1}, and

let Hn be the subgroup of Gn generated by 2. Then:

Theorem 3.3: For every prime number n,

rankQ(∂2(Xn)) = |Xn| − (n− 1) · ([Gn : Hn]− 1).

In particular, Xn is acyclic if and only if Z∗
n is generated by {±1, 2}.

We only sketch the proof. Recall the partition of Xn’s edges and faces to the

sets Ei and Fi. We now consider a coarser partition by joining together all the

Ei’s and Fi’s for which i belongs to some coset of Hn. This induces a block

structure on ∂2(Xn) with [Gn : Hn] blocks. An argument as in the proof of

Lemma 3.2 yields the structure of these blocks. Finally, an easy computation

shows that one of these blocks is 2-collapsible, and each of the others contribute

precisely n− 1 vectors to the right kernel.

We conclude this section by recalling the following well-known conjecture of

Artin which is implied by the generalized Riemann hypothesis [11].

Conjecture 3.4 (Artin’s Primitive Root Conjecture): Every integer other

than -1 that is not a perfect square is a primitive root modulo infinitely many

primes.
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This conjecture clearly yields infinitely many primes n for which Z∗
n is gen-

erated by 2. (It is even conjectured that the set of such primes has positive

density.) Clearly this implies that the assumptions of Theorem 3.1 hold for

infinitely many primes n.

4. Largest hypercuts over F2

In this section we discuss questions over the field F2, where it is more convenient

to work with the notion of hypercuts. Recall that a 2-dimensional hypertcut

is an inclusion minimal set of 2-faces that meets every 2-hypertree. The main

result of this section is:

Theorem 4.1: For large enough n, the largest size of an n-vertex 2-dimensional

hypercut over F2 is
(
n
3

)− (34n
2 − 7

2n+ 4) for even n and
(
n
3

)− (34n
2 − 4n+ 25

4 )

for odd n.

Remark 4.2: The proof also provides a characterization of the extremal cases

of this theorem.

Since no confusion is possible, in this section we use the shorthand term cut

for a 2-dimensional hypercut.

The first and more interesting step in proving Theorem 4.1 is the slightly

weaker Theorem 4.3. A further refinement that yields the tight upper bound

on the size of cuts is given in Appendix B.

Note that since
(
[n]
3

)
is a coboundary, the complement C̄ =

(
[n]
3

) \ C of any

cut C is a coboundary. Moreover, the complement of the (n− 1)-vertex graph

linkv(C) is the link linkv(C̄). In what follows, linkv(C) is always considered as

an (n− 1)-vertex graph with vertex set [n] \ {v}. Occasionally, we will consider

the graph linkv(C) ∪ {v} which has v as an isolated vertex.

Theorem 4.3: The size of every n-vertex cut is at most
(
n
3

) − 3
4 · n2 + o(n2).

In every cut C that attains this bound there is a vertex v for which the graph

G = linkv(C) satisfies either

(1) Ḡ has one vertex of degree n
2 ± o(n) and all other vertices have degree

o(n); moreover, |E(Ḡ)| = n− 1 + o(n);

(2) Ḡ has one vertex of degree n− o(n), one vertex of degree n
2 ± o(n), and

all other vertices have degree o(n); moreover, |E(Ḡ)| = 2n± o(n).
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We need to make some preliminary observations.

Observation 4.4: Let G = (V,E) be a graph with n vertices, m edges and

t triangles. Denote the degree of a vertex v ∈ G by dv, and let C be the

coboundary generated by G. Then

|C| = nm−
∑
v∈V

d2v + 4t.

Proof. Let e = (u, v) ∈ E(G). Then linke(C) consists of those vertices x �= u, v

that are adjacent to both or none of u, v. Namely,

|linke(C)| = n− du − dv + 2|N(v) ∩N(u)|.
Clearly |N(v) ∩ N(u)| is the number of triangles in G that contain e. But∑

e∈E(G) |linke(C)| counts every two-face in C three times or once, depending

on whether or not it is a triangle in G. Therefore

|C|+ 2t =
∑

(u,v)∈E

(n− du − dv + 2|N(v) ∩N(u)|).

The claim follows.

Two vertices in a graph are called clones if they have the same set of neigh-

bours (in particular they must be nonadjacent).

Observation 4.5: For every non-empty n-vertex cut C and a vertex v ∈ V (C),

the (n − 1)-vertex link graph of the complement complex Ḡ := linkv(C̄) is

either (i) a union of two cliques, (ii) a complete graph minus one edge, or (iii)

a connected graph with no clones.

Proof. Directly follows from the fact that

G := linkv(C)

is Λ-connected (Proposition 2.1). Indeed, if the edges uv and uw are Λ-adjacenct

edges in G, then v and w belong to the same connected component in Ḡ.

Therefore, in case Ḡ is not connected it must be the union of two cliques. In

addition, a clone in Ḡ yields a Λ-isolated edge in G and is permissible only if it

is the only edge in G.

The size of an n-vertex cut C for which Ḡ is of types (i) or (ii) above is of

size O(n2), that is much smaller than the bound in Theorem 4.3. Therefore, we

restrict the following discussion to cuts C for which Ḡ is connected and has no

clones.
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In the following claims, let C be a cut and x ∈ V (C). Let

G = (V,E) = linkx(C),

where V = V (C) \ {x}, and
Ḡ = (V, Ē) = linkx(C̄).

Note that there are only n−1 vertices in Ḡ. In addition, denote by m = |E(Ḡ)|
and

d = (d1 ≥ d2 ≥ · · · ≥ dn−1 ≥ 1)

the sorted degree sequence of Ḡ. We label the vertices v1, . . . , vn−1 so that

d(vi) = di for all i. Recall that NḠ(v) denotes the set of v’s neighbours in Ḡ.

For every S ⊆ V , an S-atom is a subset A ⊆ V \ S which satisfies:

(u, v) ∈ E(Ḡ) ⇐⇒ (u′, v) ∈ E(Ḡ)

for every u, u′ ∈ A and v ∈ S.

The next claim generalizes Observation 4.5.

Claim 4.6: Let S ⊆ V and G′ = Ḡ \ S be the subgraph induced by V \ S.

Then, for every non-empty S-atom A, at least |A|−2 of the edges in G′ meet A.

Proof. Let H be the subgraph of G′ induced by an atom A. If H has at most

two connected components, the claim is clear, since a connected graph on r

vertices has at least r− 1 edges. We next consider what happens if H has three

or more connected components. We show that every component except possibly

one has an edge in Ē that connects it to V \ (S ∪ A). This clearly proves the

claim.

So let C1, C2, C3 be connected components of H , and suppose that neither

C1 nor C2 is connected in Ḡ to V \ (S ∪A). Let

F :=
⋃

1≤i<j≤3

Ci × Cj ⊆ E.

Since G is Λ-connected, there must be a Λ-path connecting every edge in C1×C2

to every edge in C2×C3. However, every path that starts in C1×C2 can never

leave it. Indeed, let us consider the first time this Λ-path exits C1 ×C2, say xy

that is followed by yw, where x ∈ C1, y ∈ C2, w /∈ C1 ∪C2 and yw /∈ E. By the

atom condition, a vertex in S does not distinguish between vertices x, y ∈ A,

whence w /∈ S. Finally w cannot be in A, for xw /∈ E would imply that w ∈ C1.

Hence, C1 is connected in Ḡ to V \ (S ∪ A), a contradiction.
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Claim 4.7: d1 ≤ m/2 + 1.

Proof. Apply Claim 4.6 with S = {v1} and A = NḠ(v1). It yields the exis-

tence of at least |A| − 2 edges in Ḡ that meet A but not v1. Since |A| = d1,

m ≥ d1 + (d1 − 2), implying the claim.

Claim 4.8: d1 + d2 ≤ m+n+1
2 .

Proof. Apply Claim 4.6 with S = {v1, v2} and A = NḠ(v1)∩NḠ(v2) to conclude

that m ≥ d1+d2+ |A|−3 (as (v1, v2) might be an edge). By inclusion-exclusion,

n− 1 ≥ d1 + d2 − |A|. These two inequalities imply the claim.

Claim 4.9: For every k ≥ 2,

k∑
i=1

di ≤ m− n

2
+ 2k+1.

Proof. Let S = {v1, . . . , vk}. The sum
∑k

i=1 di equals the number of edges

between S and V \ S plus twice the number of edges induced by S. Therefore,

there are at least
∑k

i=1 di −
(
k
2

)
edges with a vertex in S. In addition, we claim

that there are at least 1
2 (n − 1 − k − 2 · 2k) edges in Ḡ \ S. Indeed, there are

2k inclusion-maximal atoms of S, and every vertex in V \ S belongs to one of

them. We apply Claim 4.6 to each such atom A to conclude that there are at

least |A| − 2 edges having one vertex in A and the other not in S. The sum of

|A| − 2 over the 2k inclusion-maximal atoms A is n − 1 − k − 2 · 2k but every

such edge may be counted twice. Consequently,

m ≥
k∑

i=1

di −
(
k

2

)
+

1

2
(n− 1− k − 2 · 2k),

and the claim follows.

Proof of Theorem 4.3. Let C be a cut, and suppose that |C̄| = γ
3n

2, for some

γ ≥ 0. We assume that γ ≤ 9/4, as otherwise the Theorem follows directly. By

averaging, there is a link, say Ḡ = (V, Ē) = linkv(C̄), of at most

m :=
3|C̄|
n

= γn

edges, where V = [n] \ {v}. We may also assume that m ≥ n − 2 since Ḡ is

connected by the discussion following Observation 4.5.
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As before, we denote by d1 ≥ d2 ≥ · · · ≥ dn−1 ≥ 1 the sorted degree sequence

of Ḡ. Recall that C̄ is a 2-coboundary over F2. Therefore, Observation 4.4

implies that |C̄| ≥ mn −∑
i d

2
i . We want to reduce the problem of proving a

lower bound on |C̄| to showing a lower bound on mn−∑k
1 d

2
i , where k = k(n)

is an appropriately chosen slowly growing function. We note that dj ≤ 2m
j for

all j whence
n−1∑

j=k+1

d2j ≤ 4m2
∞∑

j=k+1

1

j2
<

4m2

k
,

i.e,

|C̄| ≥ mn−
k∑

i=1

d2i −
21n2

k
,

since m ≤ 9n/4. In addition,

k∑
i=1

d2i ≤ d21 +

( k∑
i=2

di

)
· d2 ≤ d21 + (m− n/2− d1) · d2 + 2k+1n,

where the first step follows from the fact that d2 ≥ di for i ≥ 2, and the last

step uses Claim 4.9 and d2 ≤ n.

We conclude that for ωn(1) ≤ k ≤ o(logn),

(2) |C̄| ≥ mn− d21 − (m− n/2− d1) · d2 − o(n2).

We now normalize everything in terms of n, namely, write

m = γ · n, d1 = x · n, d2 = y · n;
g(γ, x, y) := γ − x2 − γ · y + y

2
+ xy.

The optimization problem below is a normalized version of minimizing |C̄| sub-
ject to our assumptions on γ, d2 ≤ d1, and Claims 4.7, 4.8, and 4.9.

Optimization problem A

Minimize g(γ, x, y), subject to:

(1) 1 ≤ γ ≤ 9
4 .

(2) 0 ≤ y ≤ x ≤ min(γ2 , 1).

(3) x+ y ≤ γ − 1
2 .

(4) x+ y ≤ 1+γ
2 .

This optimization problem is solved in the following Theorem whose proof is

in Appendix A.
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Theorem 4.10: The answer to Optmization problem A is min g(γ, x, y) = 3
4 .

The optimum is attained in exactly two points (γ = 1, x = 1
2 , y = 0) and

(γ = 2, x = 1, y = 1
2 ).

Note that the deviation of the function g(γ, x, y) from the lower bound on

|C̄|/n2 of (2), as well as the deviations of the constraints from the assumptions

and claims, are only of order o(1). Therefore,

|C̄| ≥ min g(γ, x, y) · n2 + o(n2)

because g is continuous. In addition, plugging the optimal values on γ, x, y

completes the proof of Theorem 4.3. The first case follows immedaitely, and

for the second case we apply Claim 4.9 for k = 3 and use the optimal values

m = 2n+ o(n), d1 = n+ o(n), d2 = n/2 + o(n) to obtain that

d3 ≤ m− n/2− d1 − d2 + 16 = o(n).

5. Large d-hypercuts over F2 in even dimensions

In this section we consider large d-dimensional hypercuts over F2 for d > 2. We

show that if d is even, the largest d-hypercuts have
(

n
d+1

)
(1− on(1)) d-faces. In

contrast, for odd d we observe that the density of every d-hypercut is bounded

away from 1.

Theorem 5.1: For every even integer d ≥ 2 there exists an n-vertex d-hypercut

over F2 with
(

n
d+1

)
(1− on(1)) d-faces.

Before we prove the theorem, let us explain the difference between odd and

even dimensions. Recall that Turan’s problem (e.g., [7]) asks for the largest

density ex(n,Kd+1
d+2) of a (d + 1)-uniform hypergraph that does not contain all

the d + 2 hyperedges on any set of d + 2 vertices. This problem is still open

for all d > 1. For d odd, the support C of a d-dimensional coboundary, and

d-hypercuts in particular, has this Turan property. Indeed, since C · ∂d+1 = 0

(because ∂d∂d+1 = 0), every d + 2 vertices span an even number of members

from C. A simple double-counting argument shows that the density of C cannot

exceed 1− 1
d+2 , and in fact, a better upper bound of 1− 1

d+1 is known [14]. One

of the known constructions for the Turan problem yields d-coboundaries with

density 3
4 − 1

2d+1 − o(1) for d odd [2]. In particular, for d = 3 this gives a lower

bound of 11
16 = 0.6875. In [13] an upper bound of 0.6917 was found using flag

algebras.
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We now turn to prove the theorem for d ≥ 4. We saw in Section 2 that a

d-hypercut C is an inclusion-minimal set of d-faces whose characteristic vec-

tor is a coboundary. In addition, every d-coboundary C and every vertex v

satisfy C = linkv(C) · ∂d. Recall that C is a 2-hypercut if and only if linkv(C)

is Λ-connected for some vertex v. In dimension > 2 we do not have such a

characterization, but as we show below, an appropriate variant of the sufficient

condition for being a hypercut does apply in all dimensions.

Let τ, τ ′ be two (d − 1)-faces in a (d − 1)-complex K. We say that they are

Λ-adjacent if their union σ = τ ∪ τ ′ has cardinality d + 1, and τ, τ ′ are the

only (d − 1)-dimensional subfaces of σ in K. We say that K is Λ-connected if

the transitive closure of the Λ-adjacency relation has exactly one class.

Claim 5.2: Let C be a d-dimensional coboundary such that the (d−1)-complex

K = linkv(C) is Λ-connected for some vertex v. Then C is a d-hypercut.

Proof. Suppose that ∅ �= C′ � C is a d-coboundary and let K ′ = linkv(C
′).

Note that ∅ �= K ′ � K and therefore there are (d − 1)-faces τ, τ ′ which are

Λ-adjacent in K such that τ ′ ∈ K ′ and τ /∈ K ′. Consider the d-dimensional

simplex σ = τ ∪ τ ′. On the one hand, since exactly two of the facets of σ are

in K, it does not belong to C = K · ∂d. On the other hand, it does belong to

C′ since exactly one of its facets (τ ′) is in K ′. This contradicts the assumption

that C′ ⊂ C.

Proof of Theorem 5.1. We start by constructing a random (n−1)-vertex (d−1)-

dimensional complex K that has a full skeleton, where each (d−1)-face is placed

in K independently with probability p := 1 − n− 1
3d−3 . We show that with

probability 1 − on(1) the complex K is Λ-connected, whence C := K · ∂d is

almost surely a d-hypercut of the desired density.

We actually show that K satisfies a condition that is stronger than Λ-connec-

tivity. Namely, let τ, τ ′ ∈ K be two distinct (d− 1) faces. We find π, π′ where
π is Λ-adjacent to τ and π′ is Λ-adjacent to τ ′ and in addition the symmetric

differences get smaller, |π ⊕ π′| < |τ ⊕ τ ′|.. To this end we pick some vertices

u ∈ τ \ τ ′, u′ ∈ τ ′ \ τ and aim to show that with high probability there is some

x /∈ τ ∪ τ ′ for which the following event Px holds:

πx := τ ∪ {x} \ {u} and π′
x := τ ′ ∪ {x} \ {u′} are in K, and

τ is Λ-adjacent to πx and τ ′ is Λ-adjacent to π′
x.
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In other words, it is required that πx ∈ K and τ ∪ {x} \ {w} /∈ K for every

w ∈ τ \ {u}, and similarly for τ ′, π′
x. Therefore Pr(Px) = p2 · (1 − p)2d−2.

Moreover, the events {Px | x /∈ τ ∪ τ ′} are independent. Hence, the claim fails

for some τ, τ ′ with probability at most

(1 − p2 · (1− p)2d−2)n−2d = exp [−Θ(n1/3)].

The proof is concluded by taking the union bound over all pairs τ, τ ′.

6. Large shadowless 2-complexes over every field

The main result of this section is the construction of 2-complexes that are shad-

owless and 2-acyclic over every field F. In comparison to our previous results,

recall that assuming Artin’s conjecture there are infinitely many shadowless

2-almost hypertrees over Q. We also saw in Section 4 that every 2-almost-

hypertree over F2 has a shadow and there we discussed its minimal cardinality.

We now complement this by seeking the largest size of a shadowless acyclic

complex. Our construction works at once for all fields since it is based on the

combinatorial property of 2-collapsibility.

Theorem 6.1: For every odd integer n, there exists a 2-collapsible 2-complex

A = An with
(
n−1
2

)−(n+1) 2-faces that remains 2-collapsible after the addition

of any new 2-face. In particular, this complex is acyclic and shadowless over

every field.

Proof. The vertex set V = V (A) is the additive group Zn. All additions here

are done mod n. Edges in A are denoted (x, x + a) with a < n/2, and such

an edge is said to have length a. Also, for a > 1, b = �a
2 	 is uniquely defined

subject to 1 ≤ b < a < n/2. For every x ∈ Zn and n/2 > a > 1 we say that the

edge (x, x + a) yields the face

ρx,a :=
{
x, x+ a, x+

⌊a
2

⌋}

of length a. These are A’s 2-faces:

{ρx,a | n/2 > a �= 1, 3, x ∈ Zn}
It is easy to 2-collapse A by collapsing A’s faces in decreasing order of their

lengths. In each phase of the collapsing process, the longest edges in the re-

maining complex are exposed and can be collapsed.
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It remains to show that the complex A ∪ {σ} is 2-collapsible for every face

σ = {x, y, z} /∈ A. To this end, let us carry out as much as we can of the

“top-down” collapsing process described above. Clearly some of the steps of

this process become impossible due to the addition of σ, and we now describe

the complex that remains after all the possible steps of the previous collapsing

process are carried out. Subsequently we show how to 2-collapse this remaining

complex and conclude that A ∪ {σ} is 2-collapsible, as claimed.

For every n/2 > a ≥ 1, x ∈ Zn we define a subcomplex Cx,x+a ⊂ A. If

a = 1 or 3, this is just the edge (x, x + a). For all n/2 > a �= 1, 3 it is defined

recursively as Cx, x+�a
2 � ∪Cx+� a

2 �, x+a ∪ {ρx,a}.
Note that Cx,y is a triangulation of a polygon that is made up of the edge

(x, y) and a path of edges of lengths 1 and 3 from x to y (see Figure 2).

0

1

2

5

8

11

σ = {0, 6, 11} /∈ A

6

3 8

7

Figure 2. The complexes C0,11 (dots), C0,6 (grid), C6,11 (lines)

and σ = {0, 6, 11} /∈ A (filled). The vertex v = 2 appears only

in C0,11 and traversing the complex from the edge e = {2, 5}
enables a 2-collapse of σ as indicated by the arrows. Note that

the edge {8, 11} belongs to both C6,11 and C0,11 and is not

exposed.
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Our proof will be completed once we (i) observe that this remaining complex

is

Δσ := {σ} ∪ Cx,y ∪ Cx,z ∪ Cy,z,

and (ii) show that Δσ is 2-collapsible.

Indeed, toward (i), just follow the original collapsing process and notice that

Δσ is comprised of exactly those faces in A that are affected by the introduction

of σ into the complex.

We will show (ii) by proving that the face σ can be collapsed out of Δσ.

Consequently, Δσ is 2-collapsible to a subcomplex of the 2-collapsible complex

A, and is therefore 2-collpasible.

As we show below:

Claim 6.2: There exists a vertex in Δσ which belongs to exactly one of the

complexes Cx,y, Cx,z or Cy,z.

This allows us to conclude that the face σ can be collapsed out of Δσ. Say

that the vertex v is in Cx,y and only there, and let e be some edge of length

1 or 3 in Cx,y that contains v. Follow the recursive construction of Cx,y as it

leads from (x, y) to e. Every edge that is encountered there appears only in the

polygon Cx,y. By traversing this sequence in reverse, we collapse σ out of Δσ

(see Figure 2).

Proof of Claim 6.2. By translating mod n if necessary we may assume that

x = 0 and 0 < y, z − y < n
2 . If z > n

2 , then

V (C0,y)⊆{0, . . . , y}, V (Cy,z) ⊆ {y, . . . , z} and

V (Cz,0) ⊆ {z, . . . , n− 1, 0},

so their vertex sets are nearly disjoint altogether.

We now consider the case z < n
2 and assume by contradiction that the claim

fails for σ = {0, y, z}. We want to conclude that σ ∈ A, and in fact σ ∈ C0,z.

By the recursive construction of C0,z, this, in other words, means that both

edges (0, y) and (y, z) are in C0,z. We only prove that (0, y) ∈ C0,z, and the

claim (y, z) ∈ C0,z follows by an essentially identical argument.

Fix 0 < y < z < n
2 . We want to show that

(3) if (0, y) /∈ C0,z then V (C0,z) ∩ [0, y] �= V (C0,y).
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Consequently, there is a vertex v in [0, y] which belongs to exactly one of the

complexes C0,z and C0,y. If such a v < y exists, we are done, since Cy,z has no

vertices in [0, y − 1]. Otherwise,

V (C0,z) ∩ [0, y − 1] = V (C0,y) \ {y} and y /∈ C0,z .

But the vertices of C0,z form an increasing sequence from 0 to z with differences

1 or 3, so either (y− 2, y+1) ∈ C0,z or (y− 1, y+2) ∈ C0,z . In the former case,

both y−2 and y are vertices in C0,y, and therefore y−1 ∈ C0,y and consequently

y − 1 ∈ C0,z , contrary to the assumption that the edge (y− 2, y+ 1) is in C0,z.

In the latter case, y + 2 ∈ C0,z and y + 1 /∈ C0,z . Which vertex succeeds y in

Cy,z? If (y, y + 1) ∈ Cy,z then y + 1 belongs only to Cy,z. If (y, y + 3) ∈ Cy,z

then y + 2 is only in C0,z .

We prove the implication (3) by induction on y. The base cases where

y = 1 or y = 3 are straightforward. If (0, � y
2 	) /∈ C0,z then by induction

V (C0,z) ∩ [0, � y
2	] �= V (C0,� y

2 �). But V (C0,y)∩ [0, � y
2 	] = V (C0,� y

2 �) and the con-

clusion that

V (C0,z) ∩ [0, y] �= V (C0,y)

follows. We now consider what happens if (0, � y
2 	) ∈ C0,z. Which edge has

yielded the 2-face of C0,z that contains the edge (0, � y
2 	)? It can be either

(0, 2 · � y
2	) or (0, 2 · � y

2 	 + 1). But one of these two edges is (0, y) which, by

assumption, is not in C0,z, so it must be the other one. Namely, either y = 2r

and (0, 2r + 1) ∈ C0,z or y = 2r + 1 and (0, 2r) ∈ C0,z.

Let us deal first with the case y = 2r. Assume, in contradiction to (3), that

V (C0,z) ∩ [0, 2r] = V (C0,2r).

In particular V (C0,z)∩ [r, 2r] = V (C0,2r)∩ [r, 2r]. But since (0, 2r+1) is an edge

of C0,z it also follows that V (C0,2r+1) ∩ [r, 2r] = V (C0,z) ∩ [r, 2r]. Therefore,

V (C0,2r+1) ∩ [r, 2r] = V (C0,2r) ∩ [r, 2r].

By the recursive construction of C0,2r+1 and C0,2r we obtain that

V (Cr,2r+1) ∩ [r, 2r] = V (Cr,2r).

By using the rotational symmetry of A we can translate this equation by r to

conclude that V (C0,r+1) ∩ [0, r] = V (C0,r). By induction, using the contrapos-

itive of Equation (3) this implies that (0, r) ∈ C0,r+1, hence r = 1. However,

C0,z cannot contain both (0, 3) and (0, 1) so we are done.

The argument for y = 2r + 1 is essentially the same and is omitted.
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7. Open problems

• There are several problems that we solved here for 2-dimensional com-

plexes. It is clear that some completely new ideas will be required in

order to answer these questions in higher dimensions. In particular,

it would be interesting to extend the construction based on arithmetic

triples for d > 2.

• An interesting aspect of the present work is that the behaviour over F2

and Q differ, sometimes in a substantial way. It would be of interest to

investigate the situation over other coefficient rings.

• How large can an acyclic shadowless 2-complex over F2 be? Theorem

6.1 gives a bound, but we do not know the exact answer yet.

• Many basic (approximate) enumeration problems remain wide open.

How many n-vertex d-hypertrees are there? What about d-collapsible

complexes? A fundamental work of Kalai [6] provides some estimates for

the former problem, but these bounds are not sharp. In one dimension

there are exactly (n−1)!
2 inclusion-minimal n-vertex cycles. We know

very little about the higher-dimensional counterparts of this fact.

Appendix A. Proof of Theorem 4.10

Let h(γ, x, y) = g(γ, x, y)− 3
4 = γ−x2− 3

4 −y(γ− 1
2 −x). We need to show that

h ≥ 0 under the conditions of the Optimization problem. This involves some

case analysis.

First note γ − 1
2 − x ≥ 0 by condition 3, so that for fixed γ, x we have that h

is a decreasing function of y. Thus, to minimize h, we need to determine the

largest possible value of y.

(1) We first consider the range γ ≤ 2. Here condition 4 is redundant, and

y ≤ min{x, γ − 1
2 − x}.

(a) We further restrict to the range x ≤ γ
2 − 1

4 , where x ≤ γ − 1
2 − x,

so the largest feasible value of y is y = x. Note that

h|y=x = γ − 3

4
− x

(
γ − 1

2

)
.

But γ − 1
2 ≥ 0 by condition 1, so h is minimized by maximizing x,

namely taking x = γ
2 − 1

4 . This yields h = 1
8 − 1

2 (γ − 1)(γ − 2)

which is positive in the relevant range 2 ≥ γ ≥ 1.
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(b) In the complementary range γ
2 − 1

4 ≤ x the largest value for y is

y = γ − 1
2 − x which yields

h =γ − x2 − 3

4
−
(
γ − 1

2
− x

)2

=− 2
(
x− γ

2

)(
x− γ − 1

2

)
− (γ − 1)(γ − 2)

2
.

It suffices to check that h ≥ 0 at both extreme values of x, namely
γ
2 − 1

4 and γ/2. Also h = 0 only at x = γ/2 with γ = 1 or 2.

(2) In the complementary range γ ≥ 2, condition 3 is redundant and con-

dition 4 takes over.

(a) Assume first that x ≤ 1+γ
4 , then x ≤ 1+γ

2 − x and the extreme

value for y is y = x. Again h|y=x = γ − 3
4 − x(γ − 1

2 ) and now the

largest possible value of x is x = 1+γ
4 which yields h = (5−2γ)(γ−1)

8 .

This is positive at the range 9
4 ≥ γ ≥ 2.

(b) When x ≥ 1+γ
4 the minimum h is attained at y = 1+γ

2 −x, so that

h =γ − x2 − 3

4
−
(1 + γ

2
− x

)
·
(
γ − 1

2
− x

)

=− 2(x− 1)
(
x+ 1− 3γ

4

)
− 1

2
(γ − 2)

(
γ − 5

2

)
.

For fixed γ it suffices to check that h ≥ 0 at the two ends of the

range 1 ≥ x ≥ 1+γ
4 . At x = 1 we get h = − 1

2 (γ − 2)(γ − 5
2 ) which

is nonnegative when 9
4 ≥ γ ≥ 2 with h = 0 only at γ = 2. When

x = 1+γ
4 , we get h = (5−2γ)(γ−1)

8 which is positive for 9
4 ≥ γ ≥ 2.

To sum up, h ≥ 0 throughout the relevant range with two points where h = 0,

namely γ = 2, x = 1, y = 1
2 and γ = 1, x = 1

2 , y = 0.

Appendix B. Proof of Theorem 4.1

Let us recall some of the facts proved in Section 4 concerning the largest n-

vertex 2-hypercut C. Pick an arbitrary vertex v. Since C is a coboundary, it

can be generated by an n-vertex graph which consists of the isolated vertex v,

and G = linkv(C), an (n − 1)-vertex Λ-connected graph. Similarly, C̄ can be

generated by the disjoint union of v and Ḡ. As we saw, there exists some v for

which the corresponding Ḡ satisfies either

Case (I): m = n− 1 + o(n), d1 = n
2 ± o(n) and d2 = o(n), or

Case (II): m = 2n± o(n), d1 = n− o(n), d2 = n
2 ± o(n) and d3 = o(n),
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where, as before, m = |E(Ḡ)|, d1 ≥ d2 ≥ · · · ≥ dn−1 is the degree sequence of

Ḡ, with di = d(vi). We denote by t the number of triangles in Ḡ. Since C is

the largest cut, the graph Ḡ attains the minimum of f(Ḡ) = nm −∑
d2i + 4t

among all graphs whose complement is Λ-connected.

We now turn to further analyse the structure of Ḡ, in Case (I).

Lemma B.1: Suppose that Ḡ satisfies Case (I) and let H = Ḡ \ v1. Then H is

either (i) a perfect matching, or (ii) a perfect matching plus an isolated vertex,

or (iii) a perfect matching plus an isolated vertex and a 3-vertex path.

Proof. The proof proceeds as follows: for every H other than the above, we find

a local variant Ḡ1 of Ḡ with f(Ḡ1) < f(Ḡ). We then likewise modify G1 to G2

etc., until for some k ≥ 1 the graph Gk is Λ-connected. The process proceeds

as follows.

For every connected component U of H of even size |U | ≥ 4, we replace H |U
with a perfect matching on U , and connect v1 to one vertex in each of these |U|

2

edges. Now all connected components of H are either an edge or have an odd

size.

Consider now odd-size components. Note that H can have at most one iso-

lated vertex. Otherwise Ḡ is disconnected or it has clones, so that G is not

Λ-connected. As long as H has two odd connected components which together

have 6 vertices or more, we replace this subgraph with a perfect matching on

the same vertex set, and connect v1 to one vertex in each of these edges. If

the remaining odd connected components are a triangle and an isolated vertex,

remove one edge from the triangle, and connect v1 only to one endpoint of the

obtained 3-vertex path. In the last remaining case H has at most one odd

connected component U .

If no odd connected components remain or if |U | = 1, we are done.

In the last remaining case H has a single odd connected component of order

|U | ≥ 3. We replaceH |U with a matching of (|U |−1)/2 edges, connect v1 to one

vertex in each edge of the matching and to the isolated vertex. If, in addition,

there is a connected component of order 2 with both vertices adjacent to v1

(note that by the proof of Claim 4.6 there is at most one such component), we

remove as well one edge between v1 and this component.

All these steps strictly decrease f . We show this for the first kind of steps.

The other cases are nearly identical.
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Recall that |E(H)| = n
2 ± o(n) and that H has at most one isolated vertex.

Therefore every connected component in H has only o(n) vertices. Let U be a

connected component with 2u ≥ 4 vertices of which 0 < r ≤ 2u are neighbours

of v1, and let β = |E(H |U )|− (2u− 1) ≥ 0. Let Ḡ′ be the graph after the afore-

mentioned modification w.r.t. U . We denote its number of edges and triangles

by m′ and t′ resp., and its degree sequence by d′i. Then,

f(Ḡ)− f(Ḡ′) =n(m−m′)−
∑
i

(d2i − d′2i ) + 4(t− t′)

≥n(β + r − 1)− (d21 − (d1 − r + u)2)−
∑
i∈U

d2i

≥n(β + r − 1) + (u− r)(2d1 + u− r)− 2u(4u− 2 + 2β + r).

In the second row we use t ≥ t′, which is true since the modification on U creates

no new triangles. In the third row we use
∑

i∈U d2i ≤ (maxi∈U di)(
∑

i∈U di).

Let us express d1 = n−w
2 where w = o(n). What remains to prove is that

n(β + u− 1) + (u− r)(u − r − w) ≥ 2u(4u− 2 + 2β + r).

Or, after some simple manipulation, and using the fact r ≤ 2u, that

βn+ (u − 1)n ≥ 4βu+ u(7u+ w + 3r − 4).

This is indeed so since u = o(n) implies that βn � βu and 2 ≤ u ≤ o(n) implies

(u − 1)n � u(7u+ w + 4r − 4).

The other cases are treated very similarly, with only minor changes in the

parameters. In the case of two odd connected components which together have

2u ≥ 6 vertices, in the final step the main term is (β + u− 2)n ≥ n+ βu since

u > 2. In the case of changing a triangle to a 3-vertex path the main term in

the final inequality is (β + u− 1)n = n.

The structure of Ḡ for Case (I) is almost completely determined by Lemma

B.1. Since G is Λ-connected, in Ḡ v1 must have a neighbour in each component

of H , and can be fully connected to at most one component. In addition, if P

is a 3-vertex path in H , then v1 has exactly one neighbour in P which is an

endpoint. Otherwise we get clones. Therefore the only possible graphs are those

that appear in Figure 3. The first row of the figure applies to odd n, where

the optimal Ḡ satisfies f(Ḡ) = 3
4n

2 − 4n+ 25
4 . The other rows correspond to n

even, with four optimal graphs that satisfy f(Ḡ) = 3
4n

2 − 7
2n+ 4.
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Figure 3. The graphs Ḡ that are considered in the final stage of

the proof of Case (I). The first row refers to the only possibility

for odd n. The second row to even n, where H is a perfect

matching. The third row refers to even n, where H is a disjoint

union of an isolated vertex, 3-path and a matching.

This concludes Case (I), and we now turn to Case (II). Our goal here is to

reduce this back to Case (I), and this is done as follows.

Claim B.2: Let Ḡ = linkv(C̄) be a graph on n− 1 vertices with parameters as

in Case (II). If H = Ḡ \ {v1, v2} has an isolated vertex z that is adjacent in Ḡ

to v1, then f(Ḡ) is bounded by the extremal examples found in Case (I).

Proof. Let S be the star graph on vertex set V ∪ {v} with vertex v1 in the

center and n− 1 leaves. Consider the graph

F := Ḡ⊕ S

on the same vertex set, whose edge set is the symmetric difference of E(S) and

E(Ḡ). Since every triplet meets S in an even number of edges, the coboundary

that F generates equals the coboudnary that Ḡ generates, which is C̄.

In addition, z is an isolated vertex in F since its only neighbour in Ḡ is v1.

Consequently, F = linkz(C̄), and the claim will follow by showing that F agrees
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with the conditions of Case (I). Indeed, degF (v1) = n−1−degḠ(v1) = o(n), and

|degF (u)− degḠ(u)| ≤ 1 for every other vertex u. Hence, degF (v2) =
n
2 ± o(n),

and degF (u) = o(n) for every other vertex u.

If H has no isolated vertex that is adjacent in Ḡ to v1, we show how to

modify Ḡ to a graph Ḡ1 such that (i) G1 is Λ-connected, (ii) Ḡ1 \ {v1, v2} has

an isolated vertex which is adjacent to v1 in Ḡ1, and (iii) f(Ḡ1) < f(Ḡ).

Since G is Λ-connected and using the proof of Claim 4.6, H has at most one

connected component U1 in H where all vertices are adjacent to v1 and not

to v2 in Ḡ. Similarly, it has at most one connected component U2 where all

vertices are adjacent to both v1 and v2. Also, since d1 = n−o(n), d2 = n
2 ±o(n)

and H has at most 3 isolated vertices, there exists an edge xy ∈ E(H) such

that xv1, xv2, yv1 ∈ E(Ḡ), but yv2 �∈ E(Ḡ).

G1 is constructed as follows:

(1) If neither component U1 nor U2 exists, remove the edge xy and the edge

v1v2, if it exists. Otherwise, let r := |U1 ∪ U2|.
(2) If r is even, replace it in H with a perfect matching on u − 2 vertices

and two isolated vertices. Connect v1 to every vertex in U1 ∪U2. Make

v2 a neighbour of one of the isolated vertices, and one vertex in each

of the edges of the matching. Additionally, remove the edge v1v2 if it

exists.

(3) If u is odd, replace it in H by a perfect matching on u− 1 vertices and

one isolated vertex. Connect v1 to every vertex in U1 ∪ U2, and v2 to

one vertex in each edge of the matching.

The fact that the value of f decreased is shown similarly to the calculation

in Case (I).
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