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1. INTRODUCTION

We start by recalling the notion of universality.

Definition 1.1. A graph (resp. tournament) is called l-universal if it contains every
l-vertex graph (tournament) as an induced subgraph (subtournament).

We next recall the celebrated Erdős-Hajnal conjecture [5] that we reformulate in a
somewhat nonstandard form. As usual we denote by ω(G), α(G) the clique, respectively,
anticlique number of the graph G.

Conjecture 1.2. [Erdős-Hajnal] For every integer l there is an ε > 0 such that every
n-vertex graph G with α(G), ω(G) < nε is l-universal.

The largest size of a transitive subtournament of the tournament T is denoted by tr(T ).
The Erdős-Hajnal conjecture for tournaments states:

Conjecture 1.3. For every integer l there is an ε > 0 such that every n-vertex tourna-
ment T with tr(T ) < nε is l-universal.

As shown by Alon et al. [2], these two conjectures are equivalent.
The Erdős-Hajnal conjecture in both its formulations posits that a graph (resp. a

tournament) which satisfies a rather mild upper bound on largest clique and anticlique
(resp. transitive set) must be l-universal. In this paper we ask the following:

Problem 1.4. For given integers k, l is every large graph with few k-cliques and
k-anticliques necessarily l-universal? Similarly, is a large tournament with only few
transitive subtournaments of order k necessarily l-universal?

The answer for the graph problem with k = l = 3 turns out to be positive, and we
derive a sharp bound for this statement. For tournaments, the case of k = 3 is trivial,
but the range k ≥ 4 turns out rather interesting. We prove that an upper bound on the
number of transitive 4-vertex subtournaments implies 4-universality. As explained in the
last section, this line of thought can be developed in numerous additional ways.

We need some definitions and notations which we state in the language of graphs.
Their counterparts for tournaments are obvious. For a fixed l-vertex graph H and an
arbitrary graph G we denote by p(H, G) the probability that a randomly chosen set of l
vertices in G induces a subgraph that is isomorphic to H. Given an integer l, we let Hl

be the list of all N = Nl isomorphism classes of l-vertex graphs. We refer to the vector
πl(G) = (p(H, G))H∈Hl as the lth local profile of the graph G.

Below we use G to always denote a sequence of graphs Gn with |V (Gn)| → ∞. If the
limit limn λ(Gn) exists, where λ is some graph parameter, we denote this limit by λ(G).
Likewise λ̄(G) := lim supn λ(Gn) and λ(G) := lim infn λ(Gn).

For each i = 0, 1, 2, 3 there is exactly one graph Pi ∈ H3 that has i edges, and we
denote p(Pi,G) by pi(G), or simply by pi when G is clear from the context. We note that
p0(G) (resp. p1(G)) equals p3 (resp. p2) of its complement graph. For example, in our
terminology, Goodman’s well-known bound [9] takes the form

Theorem 1.5. [Goodman] For every G there holds p0 + p3(G) ≥ 1
4 .

Jacob Fox (personal communication) has observed that the answer to Problem 1.4 is
positive for some l = �(k). Namely, he found the following lemma whose proof appears
in Section 4.
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Proposition 1.6. If both p(Kk,G) < 2−(k
2) + ε and p(Kk,G) < 2−(k

2) + ε then G is
ck-universal, where c > 0 is a universal constant.

We define �l ⊂ R
N as the set of all points π ∈ R

N for which there exists a sequence
of graphs G with πl(G) = π . It is still a major open question to get a good description
of these sets �l . In the present article we add some piece to what is known about �3.
At this writing even �3 is not yet fully understood (but see [11,16]). The state of our
knowledge of �l for l ≥ 4 is really very limited, though some work already exists, e.g.,
[7,8,12,13,17–19]. Much of the recent progress in this area was achieved using Razborov’s
flag algebras method. We say that G is l-universal if p(H,G) > 0 for every H ∈ Hl .

Our main result is

Theorem 1.7. There is a constant ρ = 0.159181 . . . such that every G with
p0(G), p3(G) < ρ is 3-universal. The bound is tight.

The number ρ is defined as ρ = 6θ2(1 − 2θ ) where θ = 0.427373 . . . is the largest
root of θ3 + θ2 − θ + 1

6 = 0.

We prove this theorem in Section 2. In Section 3 we state and prove our results for
tournaments. In Section 4 we prove Proposition 1.6 and mention several open questions.

2. PROOF OF THEOREM 1.7 FOR GRAPHS

First, note that by Goodman’s theorem 1.5,

p0, p3 ≤ ρ <
1

4
⇒ p0, p3 > 0.

It remains to prove that p1, p2 > 0. By the above-mentioned symmetry between p1 and
p2, it suffices to consider only p2.

By passing to a subsequence, if necessary, and arguing by contradiction, it suffices
to consider only sequences G with p2(G) = 0. By the graph removal lemma [1,3],
an n-vertex graph G with p2(G) = o(1) can be made P2-free1 by flipping only o(n2)

edges2. Since this changes p0(G) and p3(G) by only o(1), we may apply this removal
step to all G ∈ G, and assume that every G ∈ G is P2-free. But a graph is P2-free iff it is
a union of vertex disjoint cliques, so these are the only graphs we consider henceforth.
Our goal is to prove that max(p0, p3) ≥ ρ for such graphs.

We proceed with a series of reductions which allow us to make the following assump-
tions:

1. There is a bound on the number of cliques in all G ∈ G.
2. Both limits p0(G) and p3(G) exist.
3. p0(G) = p3(G).

Under these assumptions, the theorem follows from Lemma 2.1 below.

1Note that P2 is a 3-vertex path. This notation is not universally accepted, but
hopefully no confusion is created.

2Here o(1) means on(1). In general, little-oh terms are taken w.r.t. to the order of
the graph that tends to infinity.
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It suffices to consider n-vertex graphs G with only a bounded number of non-trivial
cliques. For let us fix some ε > 0 and remove all the edges from every clique of size
< εn. This leaves only < 1

ε
nontrivial cliques in G which now has the desired form.

This changes the parameters p0(G), p3(G) only by O(ε). By letting ε → 0 the reduction
follows.

Our next reduction is to graphs G with |p0(G) − p3(G)| ≤ O( 1
n ). Given the ad-

ditional assumption that p0(G) exists, this will imply p0(G) = p3(G). Suppose that
p0(G) − p3(G) 
 1

n for G an n-vertex graph which is the union of vertex-disjoint cliques.
We construct another n-vertex graph G′ with p0(G) > p0(G′), p3(G) < p3(G′), and
|p0(G′) − p3(G′)| ≤ O( 1

n ). This G′ is also the disjoint union of vertex-disjoint cliques
and has no more cliques than G.

To construct G′ we sequentially move vertices from the smallest clique3 in G to the
largest one, breaking ties arbitrarily, thereby changing p0 and p3 by at most O( 1

n ). We
stop when |p0 − p3| ≤ O( 1

n ).
The case p0(G) < p3(G) is similar, but even simpler. We sequentially isolate vertices

until |p0 − p3| ≤ O( 1
n ).

The last reduction is achieved by passing to a subsequence in which the limits
p0 = p0(G) and p3 = p3(G) exist and are equal.

By passing to a subsequence if necessary we can fix the bound r on the number of
nontrivial cliques and the relative sizes α1, α2, . . . , αr ≥ 0 of these cliques. In other words,
we can now restrict ourselves to a sequence G whose nth graph is Gn = Kα1n � Kα2n �
. . . � Kαrn � Kβn where α1, α2, . . . , αr ≥ 0 and β = 1 −∑

αi ≥ 0. We ignore issues of
rounding α jn to integral values since this affects the relevant parameters by only an
additive O( 1

n ) term4. The next lemma deals with graphs of this particular structure.

Lemma 2.1. Let α1, . . . , αr ≥ 0 and β = 1 −∑
αi ≥ 0. Let

p3 =
∑

α3
i and p0 = 6

∑
i< j<k

αiα jαk + 6β
∑
i< j

αiα j + 3β2
∑

αi + β3.

If p0 = p3 then

p0, p3 ≥ ρ = 0.159181 . . .

This bound is tight.

Proof. We apply the Lagrange multipliers method to determine the smallest possible
value of max(p0, p3) under the constraints p0 = p3, αi ≥ 0,

∑
αi ≤ 1. (We eliminate the

variable β by substituting β = 1 −∑
αi). There are three cases to consider:

� The minimum is attained in the interior of this region. We calculate the par-
tial derivatives of the objective function ∂ p3

∂αl
= 3α2

l and the derivatives of the
constraint

3If there is an isolated vertex in the graph, the corresponding clique gets eliminated,
but this creates no problem in the argument.

4To see this designate one vertex in each nontrivial clique as “special”. The dif-
ference between the calculations below and the exact values comes only from
triples that contain a special vertex.
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∂(p3 − p0)

∂αl
= 3α2

l − 6
∑

i< j,i, j =l

αiα j − 6

(
1 −

∑
i

αi

)∑
i =l

αi + 6
∑
i< j

αiα j

− 3

(
1 −

∑
i

αi

)2

+ 6

(
1 −

∑
i

αi

)∑
i

αi + 3

(
1 −

∑
i

αi

)2

= 3α2
l + 6αl

∑
i =l

αi + 6
(

1 −
∑

αi

)
αl = 3αl(αl + 2(1 − αl )).

The Lagrange multipliers method implies that at a critical point there holds
∂ p3

∂αl
= λ

∂(p3−p0)

∂αl
, where λ is a Lagrange multiplier. Consequently αl = λ(2 − αl )

for all l (since we are working in the interior of our region, all αl are positive).
This is a linear equation, so all αl are equal. If r ≥ 3, then p3 ≤ 3( 1

3 )3 = 1
9 , and

p0 ≥ 1
4 − p3 > 0.13 (by Goodman’s theorem), hence p0 = p3, a contradic-

tion. If r = 1, p3 = α3
1 = p0 = (1 − α1)

3 + 3(1 − α1)
2α1. The solution is

α1 = 0.652704 . . ., for which p0 = p3 = 0.278 . . . > ρ. If r = 2, p3 = 2α3
1 =

p0 = (1 − 2α1)
3 + 3(1 − 2α1)

2 · 2α1 + 6(1 − 2α1)α
2
1. The solution is α1 =

0.442125 . . . , and p0 = p3 = 0.172848 . . . > ρ.
� The minimum is attained when αi = 0 for some i. This case is solved by removing

this αi using induction on r.
� The minimum is attained when ∀i αi > 0, and

∑
αi = 1. We add the constraint∑

αi = 1 to our Lagrange multipliers equations. This gives α2
i = λ(2αi−α2

i )+μ.
All αi satisfy this quadratic equation, so they all take at most two different values,
say α1 appears s times and α2 appears t times with sα1 + tα2 = 1. We can assume
that s, t > 0, and α1 > α2 > 0 since the case of equal α’s was already treated
above.

If s ≥ 3 then p3 ≤ 1
9 , and it follows (as before), that p0 = p3, a contradiction.

If s = 1, p3 = α3
1 + tα3

2, p0 = 6
(t

2

)
α1α

2
2 + 6

(t
3

)
α3

2, and α1 = 1 − tα2. Denote

x = tα2. Here, 0 < x < t
t+1 . We have p3 = (1 − x)3 + x3

t2 and p0 = 3x2 − 2x3 −
3
t x2 + 2

t2 x3. Let τ (x) = p3 − p0. The value of x is determined by the equation
τ (x) = 0. Note that τ (0) > 0, and τ ′(x) < 0 for 0 < x < t

t+1 . Therefore, τ is
decreasing, and there is a unique solution for τ (x) = 0.

Now, τ ( 1
3 ) = 1

27 + 1
3t − 1

27t2 > 0 implies that x > 1
3 . This implies that

p0(x) > p0(
1
3 ), since, p′

0 > 0. It remains to compute, for t ≥ 4, p0(
1
3 ) > 7

27 − 1
3t ≥

7
27 − 1

12 = 0.175 . . . > ρ.
The case s = t = 1 is vacuous, since p3 > p0 = 0.
If s = 1, t = 2 the equation in x = 2α2 is 1 − 3x + 3

2 x2 + 3
4 x3 = 0 with root at

x = 0.469285 . . . , and p0 = p3 = 0.1753 . . . > ρ.
If s = 1, t = 3 then x = 3α2 satisfies 1 − 3x + x2 + 8

9 x3 = 0 so that
x = 0.409632 . . . , and p0 = p3 = 0.2134 . . . > ρ.

This concludes the case s = 1, and the only remaining case to analyze is
s = 2. Again, x := tα2. Here, p3 = (1−x)3

4 + x3

t2 and p0 = 3
2 x − 1

2 x3 − 3
t x2 + 2

t2 x3.
The range of x is 0 < x < t

t+2 . We first consider the case t ≥ 3. Define τ (x) =
p3(x) − p0(x) = 1

4 − 9
4 x + 3

4 x2 + 1
4 x3 + 3

t x2 − 1
t2 x3. Again, τ (0)> 0, and τ ′ < 0

for 0 < x < t
t+2 , hence τ decreases. Also, p0 increases, since p′

0 > 0.
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Let x0 = 0.115749 . . . be the solution in [0, 1] of the equation 1
4 − 9

4 x +
3
4 x2 + 1

4 x3 = 0. τ (x0) = 3
t x2

0 − 1
t2 x3

0 > 0. Since τ decreases, the solution for τ = 0
is bigger than x0. Since p0 increases, the optimal value of p0 is larger than
p0(x0) = 0.172848 . . . − 0.040193...

t + 0.003102...
t2 ≥ 0.159450 . . . > ρ.

If s = 2, t = 1, then p0 = 6α2
1 (1 − 2α1), and p3 = 2α3

1 + (1 − 2α1)
3. Solv-

ing for p0 = p3 gives α1 = 0.234643 . . . or α1 = 0.427373 . . .. Since α1 > α2 =
1 − 2α1, we have α1 = 0.427373 . . ., and p0 = p3 = ρ. This example proves the
tightness claim in the lemma.

Finally, s = 2, t = 2 gives p0 = 6(2α2
1α2 + 2α1α

2
2 ) = 3α1(1 − 2α1) and

p3 = 2α3
1 + 2α3

2 = 1
4 − 3

2α1 + 3α2
1. Solving for p0 = p3 with α1 > α2 gives

α1 = 3+√
5

12 = 0.436338 . . ., and p0 = p3 = 1
6 > ρ. �

3. ON 4-PROFILES OF TOURNAMENTS

As in the discussion above, we consider families T of tournaments of orders going to
∞ and discuss their k-local profiles. Likewise we define the limit values sets πl(T ) and
the limit sets �l of tournaments. The 3-profiles of tournaments are easy and completely
understood. There are just two 3-vertex tournaments, one transitive and one cyclic with
frequencies t3 and c3 = 1 − t3, respectively. It is well-known and easy to prove that for
every T there holds t3(T ) ≥ 3

4 and this is all there is to 3-profiles of tournaments.
In this section we prove the analog of Theorem 1.7 for tournaments and k = 4. In

addition we derive some information on �4(tournaments).
There are exactly four isomorphism types of 4-vertex tournaments, see Figure 1. Their

names are as follows:

� T4 is the transitive 4-tournament.
� C4 is the (one and only) strongly connected 4-tournament.
� In W4 there is a cyclic triangle all three vertices of which arrow the fourth vertex.
� In L4 one vertex arrows all the three vertices of a cyclic triangle.

We use the shorthand t4(T ), c4(T ), w4(T ), l4(T ) for p(T4, T ), etc., or even do not
mention T explicitly when clear from the context. Note that if the limits t4, c4, w4, l4
exist for some family of tournaments T , then the limit fraction of cyclic triangles c3(T )

exists as well and equals 2c4+w4+l4
4 .

We recall the class C = Cn of circular tournaments of odd order n. The n vertices of
Cn are equally spaced on the unit circle, with an edge x → y iff the clockwise arc from
x to y is shorter than the counter clockwise arc between them. We are now ready to state
our theorem for tournaments:

FIGURE 1. The four types of 4-vertex tournaments (in order): T4,C4,W4, L4.
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Theorem 3.1. Every family of tournaments T for which t4(T ) < 1
2 is 4-universal.

Moreover, w4(T ), l4(T ) ≥ 1
2 − t4(T ). Also c4 ≥ 1

6 when t4(T ) ≤ 1
2 .

The circular tournaments satisfy t4(C) = 1
2 and yet l4 = w4 = 0.

Remark 3.2. We do not know whether the inequality c4 ≥ 1
6 is tight, and so we ask

how small c4(T ) can be when t4(T ) = 1
2 . A similar question is presented in remark 3.5.

Proof. The theorem follows from the proposition below. In more detail, the positivity
of t4, l4, and w4 follows from items (2), (3), and (4), respectively. The lower bound on c4

follows by combining 1 with the equality c3 = 1−t4+c4
4 . �

Proposition 3.3. The following inequalities hold for every (t4, c4, w4, l4) ∈ �4.

c4 ≤ t4 (1)
3

8
≤ t4 (2)

t4 + l4 ≥ 1

2
(3)

t4 + w4 ≥ 1

2
(4)

All the above inequalities are tight. In addition

c4 ≥ 6c2
3. (5)

Remark 3.4. These inequalities, four linear and one quadratic, provide some informa-
tion on the set �4. It would be interesting to derive a full description of �4.

Remark 3.5. We still do not know how tight inequality (5) is and we ask how small
c4(T ) can be, given c3(T ). It is not difficult to see that this question is equivalent to the
problem of minimizing t4(T ) given t3(T ), which is analogous to an interesting question
about graphs: Let 2 ≤ s < r, given p(Ks,G) how small can p(Kr,G) be? (This question
is stated in its general form in [11] though it was probably posed earlier.) Razborov’s
recent solution for s = 2, r = 3 [16] was a major achievement in local graph theory. The
problem was subsequently solved for s = 2, r = 4 by Nikiforov [13], and for s = 2, and
general r by Reiher [17]. To the best of our knowledge, the problem remains open for
s ≥ 3.

Proof of Proposition 3.3. Inequality (1): Recall that t3 ≥ 3
4 and c3 ≤ 1

4 . The inequal-
ity follows, since, c3 = 2c4+l4+w4

4 . This holds with equality for the circular tournaments
C, for which t4 = c4 = 1

2 and l4 = w4 = 0.
Inequality (2) follows by applying the inequality t3 ≥ 3

4 to the outset of every vertex.

To see that there are always at least 3
4

∑(d+(x)

3

)
transitive 4-vertex subtournaments, count

for each vertex x, the number of transitive triangles among the d+(x) out-neighbors of x.
The inequality follows now from the convexity of the function

(t
3

)
. Equality holds, e.g.,

for random tournaments.
Inequalities (3) and (4) are equivalent, of course. We prove the latter. Clearly(n

4

)
(t4 + w4) = ∑

x∈V

(d+(x)

3

)
. Again a simple convexity argument yields the inequality

and equality holds for random tournaments.
Inequality (5): Note that two cyclic triangles sharing a common edge necessarily form

a C4. Let us denote by S the set of cyclic triangles in an n-vertex tournament T , and for an
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edge e, Se = {s ∈ S : e ⊂ s}. Then c4
(n

4

) = ∑
e

(|Se|
2

) ≥ (n
2

)(∑ |Se|/(n
2)

2

) = (n
2

)(3c3(n
3)/(

n
2)

2

) =
(6 + o(1))c2

3

(n
4

)
. The inequality follows. �

4. FURTHER DIRECTIONS AND DISCUSSION

The following questions suggest themselves:

(1) Is there some ε > 0 such that every graph family with p0, p3 < 1
8 + ε is

4-universal? As observed by Mykhaylo Tyomkyn (personal communication), no
such condition yields 5-universality, see below.

(2) Is there some ε > 0 such that every graph family G with p(K4,G), p(K4,G) <
1
64 + ε is l-universal for some values of l ≥ 3?

(3) What are the triples k, l, r for which there exists an ε > 0 such that the conditions
p(Kk,G) < 2−(k

2) + ε and p(Kr,G) < 2−(r
2) + ε imply l-universality?

(4) Is there some ε > 0 such that every tournaments family with t4 < 3
8 + ε is neces-

sarily 5-universal? What about l-universality for bigger l?
(5) Does t5 < 5!

210 + ε imply l-universality for some values of l ≥ 4?
(6) For which integers k, l does there exist an ε > 0 such that every tournament

satisfying tk < k!

2(k
2)

+ ε is l-universal? (Here tk is the proportion of transitive

k-vertex subtournaments).
(7) Jacob Fox has raised the question whether problem 1.4 can have a positive answer

only with l = O(k). As he pointed out, this would follow from the existence of
a large k-clique-free graph G with p(Kk, G) < 2−(k

2) + o|G|(1). We note that it is
an old and intriguing problem how small p(Kk, G) can be for a large k-clique-free
graph. See [4] and the recent work [14].

(8) What are the possible values of tk(T ), given the value of tl(T )? Here T is a family
of tournaments and k > l ≥ 3 are integers. The first interesting (and open) case is
k = 4, l = 3.

(9) In this article we discuss how the paucity of small homogeneous sets implies
universality in graphs and in tournaments. It is conceivable that these two problem
sets can be connected, perhaps in the spirit of Alon et al. [2], but we do not
know how or whether this can be done. Specifically, can some connection can be
established between items 3 (say, with k = r) and 6 above?

We now present Jacob Fox’s proof of Proposition 1.6 which uses the following result
of Prömel and Rödl. For a simpler proof of the results from [15] with improved constants
see [6].

Proposition 4.1. For every a > 0 there is a b > 0 such that every n-vertex graph G
with α(G), ω(G) < a log n is b log n-universal.

Proof of Proposition 1.6. Let G ∈ G, be an n-vertex graph. Select H as a ran-
dom subgraph of G with m = 2k/4 vertices. The expected number of k-cliques and
k-anticliques in H is at most

(m
k

)
(p(Kk, G) + p(Kk, G)) ≤ mk · 2 · (2−(k

2) + ε + on(1))

which can be made smaller than 1 by making k large enough. Therefore, such an H
exists with α(H), ω(H) < k. Proposition 4.1 implies that H is ck-universal, where c is a
constant. This clearly implies that G is ck-universal, as claimed. �
Journal of Graph Theory DOI 10.1002/jgt
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Two comments are in order here: (i) The above argument applies, with some minor
modifications to item 3 above and yields that if r and k are of the same order, then l could
be of the same order as well. (ii) Jacob Fox has pointed out that the methods of [6] can
be adapted to yield an analogue of the simple proof for Proposition 4.1 for tournaments,
namely

Proposition 4.2. For every a > 0 there is a b > 0 such that every n-vertex tournament
T with tr(T ) < a log n is b log n-universal.

From this we can easily deduce

Lemma 4.3. Every family of tournaments T for which tk(T ) < k!2−(k
2) + ε is ck-

universal for some absolute c > 0.

Proof. Apply the above proof of Proposition 1.6 to an arbitrary large T ∈ T . It shows
that a random subset S of 2k/4 vertices in T contains no transitive k-vertex subtournament.
By Proposition 4.2 the tournament induced on S, and therefore the whole of T is ck-
universal. �

Mykhaylo Tyomkyn (personal communication) found the following recursive con-
struction which is not 5-universal even though p0, p3 ≤ 1

8 . Let G1 = C5 be the pentagon
graph. To construct Gn, take 5 blocks each being a copy of Gn−1 and connect every two
consecutive (modulo 5) copies by a complete bipartite graph. It is easy to see that the graph
Gn is self-complementary, and p3(Gn) = 1

25 p3(Gn−1) + 6
25 e(Gn−1) where e(Gn−1) = 1

2

is the edge density of Gn−1. It follows that limn p3(Gn) = 1
8 = limn p0(Gn). On the other

hand, this family of graphs is not 5-universal. We prove by induction that Gn has no
induced copy of a 5-vertex path x1, . . . , x5. By induction not all 5 vertices are in the same
block. Also, if they all reside in different blocks then x1 and x5 are adjacent which is
impossible. So let xu, xv with u < v reside in the same block and xw be in a neighboring
block. Then necessarily u = w − 1, v = w + 1. But at least one of xu, xv has a neighbor
other than xw and this vertex cannot be fit into any of the blocks.

Notes added in proof:

(1) In a follow up paper, Hefetz and Tyomkin [10] settle Problem 1 in the above list
and make several additional interesting contributions to this area.

(2) We have recently made some progress on Problem 8 above. We intend to publish
our results soon.
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