NIPS*05 Interclass Transfer Workshop

Interclass Transfer: why learning to recognize many objects is easier than learning to recognize just one

subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link

Program

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Workshop Program for Saturday, December 10


Saturday Morning Session: 7:30am – 10:30am

7:30am   –  Interclass transfer for object recognition: overview and workshop goals (A. Ferencz)

7:40am   –  Interclass transfer as an underlying factor of human object recognition (M. Fink and S. Ullman)

8:10am   –   An alternative to modeling appearance: Modeling relative appearance (E. Learned-Miller and J. Weinman)

8:40am   –  Semi-supervised learning of distance functions, using equivalence constraints (T. Hertz and D. Weinshall)

9:10am   –  Coffee Break

9:30am   –  Transferring information using Bayesian priors on object categories (R. Fergus and L. Fei-Fei)

10:00am   –  Learning Shared Parts using Dirichlet Processes (E. Sudderth, A. Torralba and W. Freeman)

Saturday Afternoon Session: 3:30pm 6:30pm

3:30am   –  Learning domain structures (C. Kemp and J. Tenenbaum)

4:00am   –  Combining generative models and Fisher kernels for object recognition (A. D. Holub, M. Welling and P. Perona)

4:30am   –  Pattern Recognition from One Example (F. Fleuret and G. Blanchard)

4:50am   –  Coffee Break

5:00am   –  Building a classification cascade for visual identification from one example (A. Ferencz, E. Learned-Miller and J. Malik)

5:20am   –  Fast visual object identification and categorization (M. Grabner, H. Grabner and H. Bischof)

5:50pm   –  Future challenges in applying interclass transfer for object recognition(T. Darrell, J. Malik, K. Murphy, P. Perona)

6:20pm   –  Final Discussion and Summary