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Abstract

This thesis comprises three nearly self contained parts. First we examine a few
types of multi-class Support Vector Machine (SVM) classifiers that are typically
used in applied machine learning. Unlike the original binary SVM formulation, in
these classifiers the margins which are being maximized in the optimization
problem do not represent distances to the decision boundaries of the final
classifier. We investigate whether improvement can be obtained by employing
classifiers which maximiz margins with respect to the classifier’s actual decision
boundaries. Perhaps surprisingly, we will prove a theorem that negates that theory
- the optimization problem solved by the unified versions (Crammer & Singer,
2001), (Weston & Watkins, 1998), obtains a solution that is identical to that of the
optimization problem that maximizes margins with respect to the actual decision
boundaries. In addition, we present a connection between this version and the 1-

vs-1 SVM multiclass classifier.

Later, we explore the use of descriptors extracted from pre-trained CNNs for
image classification of new classes; in our work we addressed the sparsity of
those descriptors. With CNN features, we observed that for 1-vs-Rest, the use of
binary descriptors (by quantizing the CNN features) yields comparable results to
the use of the full feature value. Whereas, for Nearest Neighbor and Image

Retrieval, the binary descriptors improve classification results.

Finally, we examine hierarchical tree-like meta-structures describing a set of
classes and discover that the learnt classification trees resemble those reported by
human observers. We sought to use these trees for information transfer to new
classes of object, where the task is to recognize the novelty of a sample and use

the tree to bootstrap the classification of new classes.
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Multiclass Support Vector Machines —
Maximizing Margins of Decision Boundaries

Abstract

A few types of multi-class Support Vector Machine (SVM) classifiers are
typically used in applied machine learning, including the 1-vs-Rest classifier and
its unification to many classes. Unlike the original binary SVM formulation, in
these classifiers the margins which are being maximized in the optimization
problem do not represent distances to the decision boundaries of the final
classifier. We investigate whether improvement can be obtained by employing
classifiers which maximize margins with respect to the classifier’s actual decision
boundaries. Maybe surprisingly, we prove a theorem which states that the
problems are equivalent — when solving the optimization problems which underlie
the 2 most common unified versions of the 1-vs-Rest SVM classifier (Crammer &
Singer, 2001),(Weston & Watkins, 1998), one obtains the same solutions as if
optimization is sought using margins with respect to the classifier’s actual
decision boundaries. We also show that this classifier is equal to the 1-vs-1
multiclass classifier, when the latter is regularized in such a way that each binary
separator is required to be the difference between two uni-class separators. These
results may help to explain empirical observations where the different multi-class

SVM classifiers perform rather similarly, with inconsistent differences.

1. Introduction

Multi-class classification is a learning problem in which the learner is trained to
separate examples from k different labels. For the binary problem with k=2, one
of the more effective methods is the Support Vector Machine (SVM) classifier.
Using the hinge loss, the algorithm finds a decision boundary which separates the
two classes while achieving the largest distance (margin) from the training
examples.

A common way to create a multiclass SVM classifier from binary SVM classifiers
is termed 1-vs-Rest SVM. The algorithm trains a uni-class separator for each



class, which gives a collection of binary SVM classifiers that separate one class
from the rest of the classes. In test time, a new point is assigned the label of the
separator with the highest margin among all uni-class separators.

With more than 2 classes, this procedure appears to have at least one flaw: the
margins which are maximized in the optimization problem when solving for the
uni-class separators during training are not the margins with respect to the
decision boundaries of the final classifier; this follows from the final voting stage
over all uni-class separators. This problem is illustrated in Fig. 1 where both the
uni-class separators of the 1-vs-Rest classifier and the final decision boundaries

between the classes are shown to be different.

----decision boundaries
= SVM vectors line

Figure 1. 1-vs-Rest: Decision boundaries vs. uni-class
SVM vector lines. By definition, decision boundaries are
the lines which segment the plane into distinct regions,
such that all the points in each region are assigned to a
single class by the final classifier.

There has been a lot of work on multi-class classifiers which we cannot review
here, including the generalization of binary SVM to this problem. The two most
common unification schemes of the 1-vs-Rest classifier are defined in Def. 2 in
Section 2.2, which we denote by C&S (Crammer & Singer, 2001) and W&W
(Weston & Watkins, 1998). Another commonly used classifier is the 1-vs-1 SVM,
which is defined in Section 2.3. The 1-vs-1 classifier has a higher VC dimension
than the other classifiers discussed here. Therefore, one may expect it to perform
better, when given access to large training data.

(Hsu & Lin, 2002) empirically compared 1-vs-Rest SVM, 1-vs-1 SVM, C&S and
W&W, using the linear kernel and a relatively low dimensional data (up to 19

attributes); in these experiments 1-vs-1 SVM outperformed the other methods. In
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(Liu, et al., 2011), describing experiments with up to 255 attributes, 1-vs-1 also
outperformed 1-vs-Rest and C&S in terms of accuracy, while C&S outperformed
1-vs-Rest. In contrast, the experiments described in (Gao & Koller, 2011) with the
Caltech256 image dataset (Griffin, Holub, & Perona, 2006) using a high
dimensional data representation (> 1000 attributes) and linear kernels, showed
that 1-vs-Rest SVM can outperform 1-vs-1 SVM.

In the next chapter we investigate the “correct” optimization problem, which aims
to maximize margins with respect to the actual decision boundaries.

Our main result proves that the solution to this problem is the same as the solution
to the most common unified versions of the 1-vs-Rest SVM classifier (C&S and

W&W). We also show the connection between this classifier and the 1-vs-1 SVM
classifier for k classes; the two classifiers are equal when the @ 1-vs-1

individual classifiers are required to be the difference between two classifiers

from a set of k uni-class separators.

2. Extension of the binary SVM formulation to multi-class

Outline:

Section 2.1: starts by defining a multi-class SVM optimization problem which
aims to maximize margins with respect to the actual decision boundaries of the
final classifier.

Section 2.2 shows that the solution to this problem is the same as the solution to
existing multi-class SVM formulations (Crammer & Singer, 2001)(Weston &
Watkins, 1998).

Section 2.3 shows the equivalence of this classifier to the 1-vs-1 SVM classifier
under some strong constraints.

Section 2.4 shows some empirical comparisons using the Caltech256 image
dataset.
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2.1 Multi-class SVM definition

Let S = {(’1,y1),.-., (X, ym)} denote a set of m training examples, where
X; € R™ and labels y; € {1, ...,k} . A multiclass classifier is a function H: X —
Y that maps an instance x to label y. For simplicity of notation and without loss of
generality, in the following discussion we ignore the bias terms in the definitions
of the various SVM classifiers. It can be readily verified that all the results and
proofs follow essentially as-is when bias is added to the classifiers.

Definition 1a: eSVM (SVM extended to multiclass, version 1):

H(Xx) = argmax w, X
r=[k]

where w; x €ER" are obtained by solving:

k k
' : z I 12+ ¢ Z
min — Wo — W .
Wi, €m0 2 m 2 1 im

n
m,l=1 i=1 m=1
m>l

s.t.Vie[n],V me[k],m # y;: (W), x; — wpx;) 21— iy
This definition uses the same soft constraints as (Weston & Watkins, 1998).
Definition 1b: eSVM (SVM extended to multiclass, version 2):

H(X) = argmax w, X
r=[k]

where w; ., € R™ are obtained by solving:

n

k
n o | 3+ ¢y
min —_ W,, — W E;
V_V1,..,k'€i20 2 m L2 1 i

m,l=1 i=1
m>l

s.t.Vie[n],V me[k],m # yi: (wy,x; —wix;) =1 — g

This definition uses the same soft constraints as (Crammer & Singer, 2001).

Note that both definitions are reduced to the usual SVM definition in the binary
case k = 2, with weight vector w = w; — w,. Note also that the constraints in
Def. 2b can be written as follows:

Vie[n] : 7Tqﬁl}f}( Wy Xi —WiX) 21— g
13

Vie[n] : wyx; —max(wWpx;) =1 —¢;
t mzy;

L
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Wyl.xi—WmXi

Tw—
” yi myf,

Geometrically, Is the distance between point x; and the line defined

by (wy, —wp,), Which is one of the actual decision lines of the classifier.
Therefore, in the hard case of Def. 1b (C; — o, & = 0); using the constraints as
written above, the classifier maximizes the margin between each training example

x; and the separator of the form (w,, — w;,) which is closest to x;. Hence, serves

as the decision boundary for point x;.

2.2 Equivalence to Commonly used Multi-class SVM Definitions

We recall the joint multi-class SVM definitions in use by the community:
Definition 2a: SVM extended to multiclass as in (Weston & Watkins, 1998)
(W&W):

H(X) = argmax w, X
r=[k]

where w; , € R™ are obtained by solving:

k n k
WX T)
min - w. &
W1, kE€im20 2 4 milz 2 m
m=

i=1m=1

s.t.Vie[n],V me[k],m # y;: (W), x%; — WiX;) 21— &y

Definition 2b: SVM extended to multiclass as in (Crammer & Singer, 2001)
(C&S):

H(Xx) = argmax w, X
r=[k]

where w; ., € R™ are obtained by solving:

n

k
n 2wl + G )
min  — w. &
Wy, k.€i20 2 mii2 2 :
m=1

i=1

s.t.Vie[n],V me[k],m # y;: wyx; —wpx; 21—¢g

Theorem 1: For C =C, = % the classifiers obtained by Defs. 2a and 2b are

equal to the eSVM classifiers using Defs. 1a and 1b respectively.



13

Proof: In the following we only prove the equivalence between Defs. 1b and 2b.
Equivalence between Defs. 1a and 2a can be shown in the same manner.

Define V ie{2..k} v;; = wy — w;. We start by changing variables from {w, ,}
to {wy, v1, x}. Since the Jacobian of this variable transformation is 1, it will not
change unconstrained extrema. For notation convenience we will also use
additional notations for the following dependent variables Vi,j € {2..k}: v, ; =
vy; — V1, S0that Vi, j € {1..k}: v j = w; —w;.

After this change of variables, we need to prove that:

1 k n
. 2 § — 2 + C E
min —ulwyllz + W1 — Vim &
(FLv1 9 hEi20 2{” 1”2 m_2“ 1 1, “2} - i

k n
— : 1 2 C
B v1,2r,?132i20 2x*k z ”vm,le * ; ;

m,l=1
m>l

s.t.Vie[n],Vmelklm#y;: vy, mx;21—¢g

Lemma 1: for v; ; € R™ as defined above:

k 1 k 1 k
2 2
Dol =2 Qv =7 D llvwsll;
j=2 j=2

i,j=1
i<j

Proof: by induction.
Basis: for k = 3

3
1 2 1 2 1 2 1 2
LS ol = ol sl + 2ol

=1
i<j

1 2 1 2 1 2
=3 lvazll, + 3 lvasll, + 3 [v15 = vaall,
1 1 2
= ||V1,2||§ + ||V1,3||§ 3 ||V1,2||z 3 ||V1,3||z —3V13* V12

3 1 3
2
=D lowill; =50 v
j=2 j=2

Inductive step: assume for k — 1, prove for k:
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=2

k-1 k-1 2
2 2 1
lowelly + D Mol = | v+ D iy ) =
j=2 j=2
1 2
ZH%“ ) + ol +k2||v1,|| =l

k k 2
2 1
Dl —;(Z ) =
j=2

~.

(_\w
Il

2

"Z

j=2

W‘Il\)

Using the induction hypothesis:

k-1

| \

- Zuvl,n + Jonil; + G = 2ol +Z||v1]|| ~2v ) vy | =
i,j=1 j=2 /
i<j

_/

ol W

anvun + ol +Z||v1k—v1,|| E
,j=1 /
<j

vaun +loasll; + va,knw
)

i,j=1
i<j

1 k
2
= [l

=1
i<j
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We shall now continue with proving that

1 : C
. 2 E 2
min —{|lw||% + wy; — v + C Z &
{W1,v1,2, k}€20 2{” 1”2 m—2” ' LmHZ} i=1 l

k n
. 1 5
- "l.zr,?ll,relizo 2xk Z ”vm,l”2 + Cz &

m,l=1 i=1
m>l

s.t.Vie[n],Vmelklm#y;: vy, mx;=21—¢g
We first observe that w; is unconstrained, and that only the left hand of the

equation depends on it where

k

k k
F o= lwillg + Y Jwa = vl = dexlwallg + ) onlls — 2wy Y vy
i=2 =2

=2

Therefore, in any extremal point of this function, its derivative with respect to w,
must be 0. Since the second derivative with respect to w,; is positive, this

extremum is a minimum. Hence, we can derive the value of w; at a minimum
k

K
JoF R 1
OZG_MZZk*Wl_ZZvl’i = W1=EZU1J
=2 =2
Substituting w; = w; into F we get:
2 2

k 1 k 2 k k 1 k
2 2
F=Z||v1,i||2+k(zzvl,i> SN Z||v1,i||2—;(zvl,i>
i=2 i=2 i=2 i=2

i= i=2

2

Using Lemma 1, it follows that at a minimum:

k 1 k 1 k
2
Dlwnlli =F = > oslls =% D llwm = will
m=1

i,j=1 m,l=1
i<j m>l

It follows that the optimization problems defined in Def. 1b and Def. 2b are
identical up to multiplication by k with the same constraints. Hence the classifiers
are equal.
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2.3 Relation to 1-vs-1 multi-Class SVM classifier
We recall another commonly used multi-class SVM classifier:

Definition 3: 1-vs-1 multiclass classifier

H(x) = argmax E 1{erf>0}
r=[k] ’
=1
W, € R™ are binary classifiers between class m and [ where w,,; = —wp,,,

obtained by solving:

n

k n
. 1 1 4
Jmin 5 D @l +€ )0 ) e

m,l=1 i=1 m=1
m>l

s.t.Vie[n],V me[k],m # y;: Wy ;mX; =21 — &y
Note that without additional constraints and when € — oo (hard SVM), these are

k(k-1)

essentially independent optimization problems defining each w,,,

independently.

Theorem 2: let w,,,; € R™ define a 1-vs-1 multiclass classifier, and let there be k
vectors w; _, € R™ such that w,,; = w,, — w; . Under this constraint, the 1-vs-1
classifier is identical to the eSVM classifier defined by w; _, (Def. 1a).
Proof: if we plug w,,; = w,,, — w; into the 1-vs-1 definition above, the definition
of w; _, € R™ becomes identical to eSVM Def. 1a. Hence we need to show that

H(x) = argmaxz L w2>wx = argmax Wy X

=[k]

using the fact the w, ;x > 0= w,x > w;x.

(&) r=argmax w,x = WwWyx>wx, VI+T7T
r=[k]

= z w0 wx < Z Lwewng=k—1 Vr+7
=1 =1
l#r L#7

= 7= argmaXZ 1w, 2> w2}
r=[k] 4=
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=) Let = max,_p 2=y 1{w,z>wm- If F=4k—1 then this direction
immediately follows. To prove this, we will assume that # < k — 1 and arrive at a

contradiction. Let 7 = argmax ¥/~ 1w, 2> w,1}-
r=[k]

F<k—1=3r | W,i> WX

> WX > WX, (VI#7| W% >wx)}

k k
= Z Y, w>wz = 2 Ypeswz t1
=1 =1
which contradicts the maximality of 7.

2.4 Multi-class classification with the Caltech256 database

To complete the discussion and in accordance with earlier empirical work
described in the introduction, we tested 1-vs-Rest SVM, 1-vs-1 SVM, C&S
(Crammer & Singer, 2001) and NN (Nearest Neighbor) on the Caltech256 dataset
(Griffin, Holub, & Perona, 2006). We chose 5 random 60/20 train-test splits. For
data representation we used the 20" layer of the pre-trained CNN Overfeat
(Sermanet, et al., 2014) as image features (4096 features - ‘fast” CNN version).
For each train image we also added the horizontally mirrored image. All SVM
and C&S classifiers were trained using LibLinear (Fan, Chang, Hsieh, Wang, &
Lin, 2008) with a 3-fold cross validation to tune the C parameter (C =
2713,2712 [ 23). For Nearest Neighbor (NN) we use the MATLAB

implementation. Results are shown below in Table 1.

Table 1: Classification methods

Caltech 256 1-vs-REST C&S 1-vs-1 NN

Test Error 34.63+1.0 33.91+0.6 33.33+0.9 53.73+0.3

It can be readily seen that in our experiments all SVM classifiers perform roughly
the same with some edge to the 1-vs-1 classifier, while the NN classifier performs

significantly worse.
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We note in passing an empirical observation: when running a 1-vs-Rest SVM
classifier, around 40% of the validation examples are considered negative by all
of the uni-class separators; almost 60% are considered positive by only one SVM
classifier.

3Summary

In this chapter we took another look at the question of how to generalize the
binary SVM classifier to the multi-class problem. Specifically, we looked into the
margins that are being maximized by existing methods: 1-vs-1, 1-vs-Rest, and the
two unified variants of 1-vs-Rest — C&S (Crammer & Singer, 2001) and W&W
(Weston & Watkins, 1998). We started from the observation that the margins that
the methods aim to maximize are not the margins with respect to the decision
boundaries of the final classifier. This seems to undermine the viability of these
methods. However, our main result indicates that these methods effectively
maximize the margins with respect to the decision boundaries as one would hope
to do. Another result shows that the W&W variant is identical to the 1-vs-1
classifier when the latter is constrained so that each binary classifier is the
difference between two uni-class separators. These results support empirical
evidence from the literature showing that different multi-class SVM classifiers

perform well and rather similarly, as we show in our experiments as well.
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Visual Object Recognition with Sparse
Features Derived from a Convolution Neural
Net

Abstract

Recent multi-class visual object recognition studies, favor 1-vs-Rest SVM with
descriptors extracted from pre-trained CNNs when the image database contains
many different classes. In our work, we address the sparsity of such descriptors.
With CNN features, we observed that for 1-vs-Rest, the use of binary descriptors
(by quantizing the CNN features) yields comparable results to utilizing the full
feature value. Moreover, for Nearest Neighbor and Image Retrieval, the binary

descriptors improve classification results.

1. Introduction

Deep convolution neural networks currently achieve state-of-the-art classification
results on image classification tasks (Krizhevsky et al., 2012); the main drawback
of Deep CNNs is that, due to their large number of parameters, they require
abundant (thousands) training samples in order to be trained effectively.

Upon studying the Deep CNNSs layers it was concluded that deep layers can form
image descriptors that represent the image better than handmade features (Zeiler
and Fergus 2013). Thus a new method emerged: utilizing descriptors extracted
from pre-trained Deep CNNs and building a new classifier on top of those
descriptors that classifies according to the new classes. Razavian et al. (2004) and
Donahue et al. (2014) revealed that this method yields cutting-edge results and
can be used even with a relatively small training set (a few dozen samples from

each class).
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Interestingly, in the description layer (one layer before the classification layer) the
descriptor tends to be sparse, this is mostly a result of the ReLU (used inside the
neuron), which zeros out all negative values.

In section 2 we will look at the quantization of the descriptor. In section 3 we will

explore a new classification method using quantized data.

2. Quantizing the CNN features

In this section we present an empirical observation on the Caltech 256 (Griffin et
al. 2006) and PASCAL VOC 2007 (Everingham et al. 2012) databases.

2.1 Method

Images are re-sized so that their small edge is 231, then the center is cropped to
231x231 and fed to the pre-trained CNN Overfeat (Sermanet et al. 2014 - using
the small, “fast’ version). The features used are taken from the 20th layer (right
before the soft-max), resulting in a 4096 feature vector. The vector is then
normalized in each dimension so that the features are in [0,1].

In preliminary tests, we attempted to use the data from layer 19 — before the
ReLU but this produced less favorable results.

Train: in additional to the train images we added the images mirrored horizontally
(mirroring has a significant effect on the features as suggested by Zeiler and
Fergus, 2013).

2.2 DataSets

Caltech 256 DB: Contains 256 classes, each class has at least 80 samples. When
testing this dataset we chose 5 random 60/20 train-test splits and reported the
results on the test part.

PASCAL VOC 2007: Contains 20 classes. The objects are not centered. When
testing this dataset we used the given train/test split, all images with more than
one label or marked as “problematic labels” were removed. Bounding box

annotations were not used.
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2.3 SVM-parameters

We used LibLinear (Fan et al., 2008) for 1-vs-Rest-SVM and Crammer & Singer.
A 3-folod cross validation is used to tune the C parameter, our first scan was
C =2713,2712 23 we then performed a denser scan of +0.5 (of the power)
near the best result, and repeated the process for 0.25 (following the paradigm of
Hsu et al. 2003, but discluding higher C values as the produced values were
smaller than 21).

For Nearest Neighbor we used the MATLAB implementation.

2.4 Results
Empirical observations: The representation features learned by the pre-trained
CNN, are sparse, 86% of the features are 0 (on both databases).

TABLE 1
TEST ERROR QUANTIZATION RESULTS
Caltech 256 No Quantization 0/1
1-vs-Rest 34.63+1.0 34.70+0.8
Crammer & Singer 33.91+0.6 33.18+0.7
Nearest Neighbor 53.73+0.3 47.66+0.4
VOC 2007 No Quantization 0/1
1-vs-Rest 20.54 20.36
Crammer & Singer 21.18 20.01
Nearest Neighbor 34.44 27.22

* For all methods listed above, train error is zero.

As seen in Table 1, with 1-vs-Rest or Crammer & Singer, the test results are near
identical. When using Nearest Neighbor, quantization of the feature vectors

provides superior test results.

3. Improved Nearest Neighbor

We created a class descriptor for each training class, it is a feature vector that has
1 if at least half the class’ samples have 1 and 0 otherwise (it represents the class’
median). We used the class' descriptors as training samples to which we applied
either Nearest Neighbor (“Median-NN"’) or Crammer & Singer (“Median-C&S”).
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TABLE 2
0/1 data CLASSIFICATION METHODS
Caltech 256 Test Error Train Error
Nearest Neighbor 47.66+0.40 0
Median-NN 42.84+0.58 37.52+0.25
Crammer & Singer 33.18+0.70 0
Median-C&S 55.37+0.43 51.71+1.31

The results in Table 2 reveal that although the train Error of Median-NN is larger,
its test Error is better than regular NN. For C&S the median descriptors yields less

favorable results than C&S.

4. Image Retrieval

Given an image query, the method we suggest, returns the K closest images from
the database (according to Euclidean distance in the feature space). In these
experiments the query images are the test images from the classification
experiments. The train images are the database. An image is considered a match if

it is from the same class as the query image.

TABLE 3
IMAGE RETRIEVAL QUANTIZATION ERROR RESULTS
1 IMAGE RETRIEVAL No 0/1
QUANTIZATION
Caltech 256 - CNN 55.66%0.7 48.45%0.3
VOC 2007 - CNN 34.44 27.22
20 IMAGE RETRIEVAL QUAN’T\ISAHON 0/1
Caltech 256 - CNN 74.18+0.4 66.62+0.2
Caltech 256 - Yang et al., 91 )
(2014)

As seen in Table 3, quantization of the feature vectors provides superior image
retrieval results. We tried to replicate the experiment of Yang et al., (2014) by
retrieving the 20 closest images. Using our method with quantization achieved

24% accuracy improvement.
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5. Summary

In this chapter we studied the effect of quantizing the features extracted from a
pre trained CNN. We observed that for 1-vs-Rest and Crammer & Singer the
quantization yields comparable results to those found when using the full feature
value. We then tested Nearest Neighbor (NN), observing that the quantization
improved classification. Our next step was to take advantage of this fact, creating
Median-NN, which is more efficient than NN, and results in better classification

accuracy (although still incomparable to 1-vs-Rest SVM).
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Tree Classification and Novelty Detection
Using Features Derived from a Convolution
Neural Net

Abstract

Recent studies of multi-class visual object recognition, with a large database of
images containing a multitude of various objects, favor using a classification
method built on top of descriptors extracted from pre-trained CNNs. In this
chapter we examine hierarchical tree-like meta-structures, which describe the set
of classes, discovering that the learned classification trees resemble those reported
by human observers. We sought to utilize these trees for information transfer to
new classes of object, where the task is to recognize that a sample is novel, and
use the tree to bootstrap the classification of the new classes. Our current methods
can only determine novelty of groups of samples, whereas 1-vs-Rest SVM
produces favorable results for retraining. We present empirical results on 27
classes of the Caltech256 image dataset.

1. Introduction

The motivation for the use of a meta-class structure is twofold; the first is
complexity; in regards to the number of classes, “flat” multi-class classification
strategies, such as 1-vs-Rest, have linear test complexity in the number of classes,
while a tree-like structure can achieve logarithmic test complexity. The second
motivation is novelty detection and information transfer.

When learning in a setting numerous classes, it is crucial that the meta-structure is
built automatically.

Related work:

Some studies present methods for automatic tree creation. Platt et al. (2000)
created tree shaped DAGs for which one class is disqualified at each level. Gao &

Koller (2011) created a tree by separating the classes into three groups at each
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node and creating a classifier that separates two of the groups and ignores the
third one.

Other researches utilized a handmade given hierarchy tree and examined novelty
detection and information transfer such as Dekel et al. (2004),Weinshall et al.
(2008), Rohrbach et al. (2011), and Coppi et al. (2014).

Other researchers explored both problems combined: Liu et al. (2011) looked for
the two groups of classes that can be separated with the biggest SVM margin for
each node (using the approximation of the Constrained Concave-Convex
procedure). Fan et al. (2014), used the similarity of various SIFT and GIST
statistics to create a classification tree.

Bodesheim et al. (2015) used local learning for multiclass novelty detection

(without trees).

2. The Dataset

We used a subset of classes from the Caltech 256 image database. As in the
previous section, all images were re-sized to 231x231 and fed to the pre-trained
CNN Overfeat. The features used were taken from the 20 layer (immediately prior
to the soft-max), resulting in a 4096 feature vector, (similarly to the past section,
for this section, in preliminary tests, we attempted to use the layer 19 data — prior
to the ReLU but obtained less favorable results; using 0/1 values instead of the
full values, gave comparable results).
Train: for all 60 train images we also added the images mirrored horizontally.
Test: 20 images (no mirroring).
e SimpleTrainTest — the Train samples are the first 60 images of each class,
the Test images are the following 20 (for reproducibility).
e 27 handpicked classes: these classes were handpicked, below is an
example of a handmade tree of these classes (in our experiments, five

subjects were asked to create trees out of the class labels).
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Fig. 1. 27 Handmade Tr;g

3. Methods

During our research, we examined four main binary tree building paradigms.

3.1 GMM-SVM-Tree

We expect this method to be the most scalable.

For each tree node we applied Constrained-GMM in order to split the classes into
two groups (Positively-Constrained-GMM is equivalent to GMM on the class’
centers as proved by Shental et al. 2003). Then we used binary-SVM on all node
samples (in accordance with the GMM created groups). The train/test samples
continued on to the next node in accordance with the aforementioned SVM
classifier. If a node has only one class, it is defined as a leaf with the class’ label.
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(In practice, for each node, we dropped classes that possessed less than 3 samples.
We conducted 5 runs of the GMM-SVM-Tree and selected the most appropriate
classifier using the SVM’s 3-fold cross validation score, for each run. We
conducted 10 runs of the GMM and selected the one that was most balanced).

For the SimpleTrainTest 27 classes, GMM-SVM-Tree produced slightly varied
tree structures for different runs. All the GMM-SVM-Trees that we observed
maintained most of the human created clusters; the following is an example of a

“bad” tree:

video-prpjector car-side-101 zebra mountafn-bike gorfla dog greyhpund llamar101 ing ibis-101 bonsqi-101 beef-mug g cormorant
& o

Ve “ freffuek © gose “ motorbikes-101 © chp © b&ar © horse @ Kangao-ml “ hibiscus © cattus @ coﬁemug @ toad “ ditk

Fig. 2. “bad” GMM-SVM-Tree, 27 SimpleTrainTest Test Error: 16.3%, Train Error: 0.03%

* This tree is on 0/1 data, regular data gave comparable results.

As is evident in fig. 2, some human defined clusters remain but there are several
“outliers” (such as the ibis-101 that joins the flowers), most of the pairs remain

logical.
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The following is an example of a “good” tree:

matorbikes-101

1% mountéin-bike

&
@
@ @
L [} ]
& ] o) ] 7
] ] & )] [ @ @ & @ o @
zebra cormorant harse kangaroo-101 bear chimp hiblscus 0g bons'ai-101 r beel-mug firetruck
ibis 01 “ amsa0r ¢ greyuund © dg @ gu\la @ i @ toad @ cattus ¢ \ndeu-pujectur © cuﬁemug © car-side-10

Fig. 3. “good” GMM-SVM-Tree, 27 SimpleTrainTest Test Error: 14.8%, Train Error: 0%

* This tree is on 0/1 data, regular data gave comparable results.

Fig.3 contains multiple human perceived clusters such as “manmade” to the right
or “birds” (with zebra as an outlier). Both “bad” and “good” trees produce similar

confusion matrix. The “bad” tree confusion matrix is presented here:

003 bear

010.beer-mug
015 bonsai- 101
025.cactus
038.chimp

041, coffee-mug
049.cormorant
055.dog

060, duck
072.fire-truek
080.frog
088.goose

090, gorilla
103.hibiscus

105 hotse
114.ibis-101
118.is

121 kangaroo-101
134.llama-101
145.motorbikes-101
146.mountain-bike
237ver
238.video-projector
280.zebra
252.car-side-101
254.greyhound
255.toad

) o010 015 025 038 041 049 056 060 o072 080 089 030 103 106 114 118 11 134 145 146 237 238 250 252 254 256
classification

Fig. 4. “bad” GMM-SVM-Tree Confusion matrix, 27 SimpleTrainTest
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It is evident from the confusion matrix in fig. 4 that the large misclassification
errors are performed for pairs of classes that are close in the tree and in the human
perception (toad-frog, ibis-duck, dog-greyhound, beer-coffee mug), however,

some of the existing errors still exist in unrelated classes (e.g. chimp-cormorant).

3.2 TSVM-SVM-Tree

This method is motivated by the hypothesis that it will benefit the overall
performance if the clustering performed at each level is optimized (at least
partially) to achieve good classification for the emerging clusters. For this reason
we chose the transductive SVM method (Gammerman & Vapnik, 1998), which
attempts to maximize the unsigned margin of the unlabeled points as well.
Specifically, we started by computing the centers of all classes, seeking TSVM-
based clustering for those points only. We selected two classes at random for each
node, then ran Transductive-SVM (using SVMlight, Joachims 1999) on the class’
centers (which identifies the line that separates the centers and separates the two
chosen classes into different groups, maximizing the margin from any other class
center). Then as in GMM, an SVM classifier was trained on all samples. (In
practice, as in GMM-SVM, we dropped smaller classes; we selected two random
classes for each run and trained TSVM with balance value of steps from 30% to
70%). The TSVM-SVM tree was implemented by Reuven Siman-Tov .

Working with centers - SVM Dual Perspective:
Using the classes centers requires significantly fewer calculations. In this section

we will show that it makes theoretical sense.
LetS = {(F11,Y1)s - (Zom Y1 )s o (Fro1 Vie)s - -or (X vic )} denote a set of m
training examples, indexed by their classes, where ¥;; € R™ and labels y; €
{—1,1} / Define: X; = %Zﬁlfi,j the class’ centers.
Definition 1: binary SVM — on class’ centers

H(x) = sign(w™x)

Where w € R™ are obtained by solving:
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k
1 2 A\ «
min —||w|| +ngi

w,g;=0 2

s.t.VYi€E[k] yj*xwx*X =>1-§

Binary SVM — on class’ centers - Dual:

. 1 Aok~ k ~ ~ ~ k ~
JRAX Mimy g, 5 IWll? + CXis1 & - Eim @i+ w o % — 1+ &) — Xisq Bi&
bz

w is unconstrained, therefore, in any extremal point of this function, its derivative
with respect to w must be 0. Since the second derivative with respect to w is
positive, this extremum is a minimum. Hence, we can derive the value of w at a

minimum;

&; can lead to —oo therefore its multiplayer must be 0:

The dual optimization problem is equal to:
k

1 i i
max SwllP- ) &+ w % -1

ai,pi= )
i=

k
s.t. VlE[k] 5—dl—ﬁl=0 'W:Zyidifi
i=1

B; is positive and appears only at the constraint, so the constraint can be replaced

by: C > @;, arranging the dual well lead to:

k
1
max —IIWIIZ—Z @G(yixw*x —1)
al‘EO 2 :
=1
k
s.t. Vie[k] C=a;, W=Zyldlfl

=1

. ~ 1 7 _ . - ~ ~ ~ ~
With %, = =Y",x; ; , we will add a change of variables: @, = a;m ,C = Ci
i meJ=1") i i
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k
1
max S IWlP- Y @iy «w s % = 1)
a;=0 2 -
i=1
k
s.t. Vie[k] C=za;, WzrﬁZyiaiJ?i
i

Therefore:

k m
H(x) = sign(W'x) = sign Yi; Z Xy %
i=1 j=

Juy

In the same manner, for binary SVM (on all points), we will get:

kK om
H(x) = sign ZYizai,j % ;"
=1 =1

L=

x|

Conclusion: Using the class’ centers as the dots for the node’s classifier, is
identical to adding the constraint: «a; ; = a;.

fi,ij is perceived as a similarity factor between x and x; ;. Therefore, a; ; serve
as importance factors (if a; ; has a high value, and x , x; ; are similar, the label of
x should be the same as x; ;).

Therefore, using the class’ centers is equal to maintaining the same importance
factor for all samples from the same class. This makes theoretical sense, since the

class’ samples should have the same +1 label.

Note: since Chapelle et al. (2008) questioned SVMlight’s convergence to a global
minimum, we also implemented a branch and bound function that detects the
global minimum of Tsvm. It didn’t improve the TSVM-SVM-Tree results on our

27 classes.
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2 @ ] %
& ) Lo ) Q@
) o W] s @& 0 Lo Lo " g
cactus irig motorbikies-101 beel-mug mountain-bike ' video-prpjector car-side-101 googe cormorant harse greyhpund gorifla
frg “ bonsz101 © hibiscus © cuﬁemug © zebra @ freluek  © vEr © ibis=01 © ditk “ lam§0r kangau—1U1 ¢ dg @ chp

Fig. 5. TSVM-SVM-Tree, 27 SimpleTrainTest Test Error: 15+1%, Train Error: 0

* This tree is on 0/1 data, regular data gave comparable results.

Fig. 5 presents one of the TSVM-SVM-Trees. For multiple runs (still
SimpleTrainTest) the tree maintains a similar form, precluding the outliers, such

as zebra or car-side-101 that tended to switch places).

003 bear

010.beer-mug

015 honsai-101
025 cactus
038.chimp

041 coffee-mug
049.cormorant
056.dog

0B0.duck

072 fire-truck

080 frog
089.goose
090.gorilla

103 hibiscus
105.harse
114.ibis-101
T18.iris

121 kangaroo-101
134.llama-101
145 motorbikes-101
146 mountain-hike
237 wer

238 video-projector
260.zebra

252 car-side-101
254.greyhound
266 toad

o038 oo 015 025 038 041 049 056 060 o072 080 083 030 103 105 114 ma =21 134 145 146 237 238 250 252 254 256
classification

Fig. 6. TSVM-SVM-Tree Confusion matrix, 27 SimpleTrainTest
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In fig. 6, we see that similarly to the GMM-SVM-Tree, the big misclassification
errors occur for pairs of classes that are close in the tree, and in human perception

(toad-frog, ibis-duck, dog-greyhound).

3.3 C-Kmeans-SVM-Tree

This method does not solely examine centers in order to split the classes; instead,
it surveys all given samples and uses their class’ label as an indication for a
positive constraint.

For each node, we used Constrained-Kmeans (Wagstaff et al. 2001) (Hu et al.,
2008), K-means which prefers to keep samples from the same class together. We
then applied SVM according to the labels (In practice as in GMM-SVM we
dropped smaller classes and conducted 5 runs).

C-Kmeans-SVM-Tree provides comparable results to TSVM-SVM-Tree on the
27 SimpleTrainTest.

3.4 Two-Split-Tree

This method creates large trees. As seen in the GMM-SVM-Tree, some of the
errors occur in unrelated classes; by transferring several of the same class to both
sides of the node and allowing them to create classification leaves on both sides,
we hoped to solve this problem.

First, we trained two 1-vs-1 separators for each pair of classes, each separator
hyper plane was selected to be close to one of the groups (this was performed by
setting a different SVM error weight C for each class; the two weights were found
using a binary search). Then, at each node, we selected the two classes that
resulted in minimal class movement to both sides. The test separator of the node
was the subtraction of the “close to class” separators (see fig. 7). In training, a

class can go to one side of the node (as in fig 7). Else it will travel to both sides.
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Fig. 7. The class will travel to side B if:
v =There is a considerable amount of samples in this Area (10 or more).
X =There are less than 10 samples in these Areas.
The two classes in each node are classes that made the least amount of

movements between both sides.

009.bear

010 beer-mug
015.bonsai-101
025 cactus

038 chimp

041 coffee-mug
049 cormorant

056 dog

060.duck

072 fire-truck

080 frog

089.goose

090 gorilla
103-hibiscus

105 horse
114.ibis-101
M8iris

121 kangaroo-101
134 llama-101

145 motorbikes-101
146 mountain-bike
237.ver

238 video-projector
250 zebra

252 car-side-101
254 greyhound
256.toad

009 010 015 025 038 041 049 056 060 072 080 089 090 103 105 114 118 121 134 145 3t 238 250 252 254 256
classification

Fig. 8. Two-Split-Tree Confusion matrix, 27 SimpleTrainTest Test Error: 12.77+£2%, Train Error: 1.1%

While the trees produced had relatively good test error, they had many more
nodes (63,000 leaves compared to the 27 leaves of the others). Their training time
was almost triple, as seen from fig 8. Several unrelated misclassifications still

occurred (llama- cactus).
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We present the results of some of the methods on the 27 classes handpicked from
the Caltech 256 dataset.

TABLE 1
5 train/test split results
Data* Caltech 27+ Test Error  Train Error  Tree Height Leaves num
Crammer & Singer 13.37£1.15 0 - -
0/1  Crammer & Singer 13.33£0.74 0.01+0.05 - -
GMM-SVM-Tree  15.44+1.04 0.04+0.06 6 27
0/1 GMM-SVM-Tree 15.41+1.15 0.04+0.04 6 27
Two-Split-Tree***  14,70+1.93  1.24+0.64 24-26 63,000-99,000
0/1  Two-Split-Tree*** 1555+1.85 3.12+0.71 23-25 28,000-64,000

* 0/1 is the data quantized so that all values that are not O are 1

** 27 are hand-picked classes of the Caltech 256.

*** We tested a different threshold for the Two-Split-Tree; using 7 instead of 10 produced trees with double the
amount of leaves, but comparable classification error. Whereas, using 30 produced smaller trees but increased
classification error by more than 4%.

As seen from table 1 Crammer & Singer slightly outperforms both trees in

classification error.

4. Novelty detection

Our goal was to not only recognize that this is a novel class (a class that wasn't
evident in the train phase), but also to detect the part of the tree in which it is
supposed to exist (described in 4.1) and later to retrain part of the tree to classify
the new class (section 4.2).

4.1 Meta class novelty detection

We aim to detect a novel class and determine the part of the tree to which the
class belongs. We began with 27 classes, and removed 3 classes: the goose (which
was expected to be classified with the birds), the beer mug (which is close to the
coffee mug) and the VCR (paired with the video projector).

Method: when a sample reaches a leaf, a descriptor of the sample is created by

setting 1 to features that are active (value > 0), this descriptor is then compared to
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the leaf’s descriptor (1 iff more than half of the training samples in the leaf are
active in this feature). If more than 1/3 (empirically chosen) of the active features
in the training descriptor are not active in the sample’s descriptor, the sample is

considered novel.

Test results: Given a single sample, this method shows poor novelty detection
results. However, when collecting a group of samples that belong to the same
unknown class, and using the median as a sample, we could achieve
reasonable results, as shown in table 2. The classification results also
improved drastically since the group traveled the tree in accordance with a

majority vote.

TABLE 2
Novelty detection results —- GMM-SVM-Tree
Test group Novel Novel false ~ Novel false Test Error
size Error positive negative (trained classes)
1 51.11 50 1.11 16.45
10 6.48 5 1.48 0.2

* The data is the 27 classes of the Caltech 256, the Novel classes are: goose, beer mug,
ver (11.11% of the classes).

4.2 Retrain

Given that the novel samples are known and for each novel class, the place in the
tree to which it should be added is known (according to a tree trained with the
novel class, e.g. goose as a brother of duck). We tested the retraining of the tree
with only a few samples of the novel class. Our main goal was to test the
knowledge transfer of the tree (e.g. if the tree learned how to distinguish birds,
then this knowledge can be used for learning a new bird, using the tree hierarchy
structure). We tested two methods: the first was splitting the destination leaf using
an SVM from the novel samples; in the second method we also retrained every

SVM classifier in the route from the root to the novel class' leaf.



37

TABLE 3
Novelty retrain Test Error - GMM-SVM-Tree
added group size Tree leaf split Tree full path fix 1-vs-Rest
0 25.56 25.56 23.14
1 25.37 25.74 23.33
5 23.52 23.70 20.37
10 21.67 21.48 18.70
All from start 17.22 17.22 15.18

* The data is the 27 classes of the Caltech 256, the Novel classes are: goose, beer mug, vcr
(11.11% of the classes), the classifiers were trained on 24 classes, and then retrained with part
of the 3 new classes.

TSVM/C-KMEANS trees produced comparable results.

In table 3 we compared the tree retrain methods to the retraining of a 1-vs-Rest
SVM classifier with the added group size; it is evident that 1-vs-Rest SVM does
not only produce a better classification rate, but has a higher benefit from the 5

added samples (~3% compared with the ~2% of the trees).

5. Summary

In this chapter we examined four hierarchical tree-like meta-structures, observing
that large misclassification errors are performed for pairs of classes that are
similar, both in the tree as well as in human perception. We sought to utilize these
trees for information transfer to new classes of object. The first step was novelty
detection; our method achieved good novelty detection rates, with a group of
samples that belong to the same unknown class. However, yielded poor results
with a single sample. The second step was using the tree to bootstrap the
classification of the new classes. Our experiments reveal that 1-vs-Rest SVM
produced favorable results compared to updating the trees. This means that the

tree’s information transfer was unproductive.
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