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Abstract—In this paper, we consider principal component anal-
ysis (PCA) in decomposable Gaussian graphical models. We exploit
the prior information in these models in order to distribute PCA
computation. For this purpose, we reformulate the PCA problem
in the sparse inverse covariance (concentration) domain and ad-
dress the global eigenvalue problem by solving a sequence of local
eigenvalue problems in each of the cliques of the decomposable
graph. We illustrate our methodology in the context of decentral-
ized anomaly detection in the Abilene backbone network. Based on
the topology of the network, we propose an approximate statistical
graphical model and distribute the computation of PCA.

Index Terms—Anomaly detection, graphical models, principal
component analysis.

I. INTRODUCTION

W E consider principal component analysis (PCA)
in Gaussian graphical models. PCA is a classical

nonparametric dimensionality reduction method which is
frequently used in statistics and machine learning in order to
reduce sample variance with minimal loss of information [1],
[11]. The first few principal components can be interpreted as
the best low-dimensional linear approximation to the sample.
On the other hand, Gaussian graphical models, also known as
covariance selection models, exploit conditional independence
structure within the assumed multivariate Gaussian sample
distribution [7], [16]. These models represent the sample
distribution on a graph, and allow for efficient distributed
implementation of statistical inference algorithms, e.g., the
well-known belief propagation method and the junction tree
algorithm [13], [20]. In particular, decomposable graphs, also
known as chordal or triangulated graphs, provide computation-
ally simple inference methods. Our main contribution is the
application of decomposable graphical models to PCA which
we nickname DPCA, where “D” denotes both Decomposable
and Distributed.

The main motivation for distributed PCA is decentralized di-
mensionality reduction. It plays a leading role in distributed es-
timation and compression theory in wireless sensor networks
[9], [18], [19], [21], [23], and decentralized data mining tech-
niques [2], [14], [17]. It is also used in anomaly detection in
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computer networks [6], [12], [15]. In particular, [9] and [18]
proposed to approximate the global PCA using a sequence of
conditional local PCA solutions. Alternatively, an approximate
solution which allows a tradeoff between performance and com-
munication requirements was proposed in [12] using eigenvalue
perturbation theory.

DPCA is an efficient implementation of distributed PCA
based on a prior graphical model. Unlike the above references
it does not try to approximate PCA, but yields an exact solution
up to on any given error tolerance. DPCA assumes additional
prior knowledge in the form of a graphical model that is not
taken into account by previous distributed PCA methods. Such
models are very common in signal processing and communi-
cations. For example, the Gauss Markov source example in
[9] and [18] is probably the most celebrated decomposable
graphical model. In some problems approximate conditional
independency structure can be learned from the observed
data using methods such as [3], [8], and [22]. Alternatively,
conditional independence can sometimes be surmised from
other nonstatistical prior knowledge. For example, the known
topology of a sensor network can be used to infer that, given
data at neighboring sensors, the data at a given sensor is con-
ditionally independent of data at distant sensors [5]. When one
cannot identify any obvious conditional independence struc-
ture, DPCA can be interpreted as an approximate PCA method
that allow one to trade accuracy for decentralized scalability
by introducing sparsity. If the model is not decomposable
then an approximation can be obtained using classical graph
theoretic algorithms [13]. In any case, once the conditional
dependency relationships specify a decomposable model our
DPCA algorithm will be applicable.

PCA can be interpreted as maximum likelihood (ML) estima-
tion of the covariance followed by its eigenvalue decomposition
(EVD). When the samples follow a Gaussian graphical model,
PCA can be performed by applying the EVD to the ML esti-
mator of the model parameters. However, this approach to PCA
does not exploit the structure of the graphical model, whereas
DPCA is specifically designed to fully exploit it. DPCA is for-
mulated in the sparse concentration (inverse covariance) domain
in which the global EVD is successively approximated by a se-
quence of local EVD’s and a small amount of message passing.
The local EVD’s are solved over each clique in the decom-
posable graph associated with the graphical model. When the
DPCA algorithm terminates, each clique obtains its own local
version of the principal components.

To illustrate DPCA we apply it to distributed anomaly de-
tection in computer networks [12], [15]. In this context, DPCA
learns a low dimensional graphical model of the normal traffic
behavior and performs outlier detection. This application is nat-
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ural since the network’s physical topology provides a justifica-
tion for an approximate graphical model. For example, consider
two nodes which are geographically distant and linked only
through a single long path of nodes. It is reasonable to model
these two sensors as independent conditioned on the path. We
examine the validity of this model in the context of anomaly de-
tection in the Abilene network using real-world Internet traffic.
We propose an approximate decomposition of the Abilene net-
work, enable the use of DPCA and obtain a fully distributed
anomaly detection method.

The outline of the paper is as follows. Decomposable graphs
are most easily understood for the case of two cliques. There-
fore, we begin in Section II by introducing the problem formu-
lation and solution to DPCA in this simple case. The generaliza-
tion to arbitrary decomposable graphs is presented in Section III,
which depends on a recursive application of the two clique so-
lution. Then in Sections IV and V, we demonstrate the use of
DPCA using two examples. First, in Section IV, we simulate
our proposed algorithm in a synthetic tracking scenario. Second,
in Section V, we illustrate its application to anomaly detection
using a real-world dataset from the Abilene backbone network.
Finally, in Section VI, we provide concluding remarks and ad-
dress future work.

The following notation is used. Boldface upper case letters
denote matrices, boldface lower case letters denote column vec-
tors, and standard lower case letters denote scalars. The super-
scripts and denote the matrix transpose and matrix
inverse, respectively, is the cardinality of , is the union
of the sets and , and is the set of elements in which
are not in . The matrix denotes the identity, is the
minimum eigenvalue of square symmetric matrix ,
is a null vector of , is the maximum eigenvalue
of , and means that is positive definite. Finally,
we use indices in the subscript or to denote subvec-
tors or submatrices, respectively, and denotes the subma-
trix formed by the th rows in . Where possible, we omit the
brackets and use or instead.

II. TWO CLIQUE DPCA

In this section, we introduce DPCA for a simple case which
will become the building block for the general algorithm.

A. Problem Formulation

Let be a length , zero mean Gaussian random vector of
covariance . We partition the vector
where , and are disjoint subsets of indices. For later use1,
we define two cliques of indices and ,
as well as the history subset , the separator subset

and the remainder subset .
The key assumption underlying DPCA is that and

are independent conditioned on

(1)

1This terminology will be made precise in Section III when we extend the
results to decomposable graphical models.

Due to the properties of the conditional Gaussian distribution,
this implies that

(2)

Using the inversion formula for block partitioned matrices, (2)
results in

(3)

The input to DPCA is a set of independent and identically
distributed realizations of , denoted by for .
More specifically, this input is distributed in the sense that the
first clique only has access to for , whereas
the second clique only has access to for .
The covariance is unknown, but we assume prior knowledge
of the conditional independence structure defined by (3). Using
local data and message passing between the two cliques, DPCA
searches for the linear combination having maximal
variance. When the algorithm terminates, each of the cliques
obtains its own local version of , i.e., the subvectors and

.
The following subsections present the proposed solution to

DPCA. It involves two main stages: covariance estimation and
principal components computation.

B. Solution: Covariance Matrix Estimation

First, the covariance matrix of is estimated using the max-
imum likelihood (ML) technique. Specifically, the ML estimate
of , denoted by , is defined as the parameter which maxi-
mizes the likelihood of the observations subject to the constraint
(3). Due to the special decomposable structure, the solution is
simply [16, Prop. 5.6, p. 138]

(4)

where is

(5)

and is the sample covariance

(6)

Thus, the ML estimate is a dense matrix, but its inverse
(which is actually the ML estimate of the concentration matrix)
has an appealing sparse structure. Moreover, can be easily
computed in a distributed manner. Each clique can compute its
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subblock of using only local information and a single mes-
sage from the other clique of dimension , which may be
small

(7)

(8)

where the messages and are defined to satisfy (5).
The other elements in which do not belong to either clique
are equal to zero

(9)

C. Solution: First Principal Eigenvalue

Given the ML covariance estimate , the PCA objective
function is estimated as

(10)

and maximized subject to a norm constraint to yield

.
(11)

This optimization gives both the maximal eigenvalue of and
its eigenvector .

The drawback to the above solution is that the EVD compu-
tation requires centralized processing and does not exploit the
structure of . Each clique needs to send its local covariance
to a central processing unit which constructs and computes
its maximal eigenvalue and eigenvector. We will now provide
an alternative distributed DPCA algorithm in which each clique
uses only local information along with message passing in order
to calculate its local version of and .

Our first observation is that DPCA can be equivalently solved
in the concentration domain instead of the covariance domain.
Indeed, it is well known that

(12)

when the inverse exists. The corresponding eigenvectors are also
identical. The advantage of working with instead of is that
we can exploit ’s sparsity as expressed in (9).

Before continuing it is important to address the question of
singularity of . One may claim that working in the concen-
tration domain is problematic since may be singular. This
is indeed true but is not a critical disadvantage since graphical
models allow for well conditioned estimates under small sample
sizes. For example, classical ML exists only if , whereas
the ML described above requires the less stringent condition

[16, Prop. 5.6, p. 138].
We now return to the problem of finding

(13)

in a distributed manner. We begin by expressing as a trivial
line-search problem

(14)

and note that the objective is linear and the constraint set is
convex. It can be solved using any standard line-search algo-
rithm, e.g., bisection. At first, this representation seems useless
as we still need to evaluate which was our original
goal. However, the following proposition shows that checking
the feasibility of a given can be done in a distributed manner.

Proposition 1: Let be a symmetric matrix with structure

(15)

Then, the constraint

(16)

is equivalent to the following pair of constraints:

(17)

(18)

with the message matrix defined as

(19)

Proof: The proof is obtained by rewriting (16) as a linear
matrix inequality

(20)

and decoupling (20) using the following lemma.
Lemma 1 (Schur’s Lemma [4, Appendix A5.5]): Let be a

symmetric matrix partitioned as

(21)

Then, if and only if and .
Applying Schur’s Lemma to (20) with and

rearranging yields

(22)

(23)

Finally, (17) and (18) are obtained by rewriting (22) and (23) as
eigenvalue inequalities, respectively.

Proposition 1 provides an intuitive distributed solution to
(14). For any given we can check the feasibility by solving
local eigenvalue problems and message passing via
whose dimension is equal to the cardinality of the separator.
The optimal global eigenvalue is then defined as the maximal
globally feasible . Specifically, in Algorithm 1 (displayed
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below) we provide a pseudo code for the two clique DPCA that
solves for using the bisection method. Given initial bounds

(24)

Algorithm 1 is guaranteed to find the minimal eigenvalue up to
any required tolerance within iterations. Each
iteration consists of up to two local eigenvalue problems for
testing (17)–(18) and transmission of a single message from
to of size . A simple choice for the bounds in (24)
is since is positive definite, and

(25)

as proved in the Lemma 2 in the Appendix.

Algorithm 1: Bisection line search for two cliques DPCA

D. Solution: First Principal Eigenvector

After we obtain the minimal eigenvalue , we can easily re-
cover its corresponding eigenvector . For this purpose, we de-
fine and obtain . The matrix fol-
lows the same block sparse structure as , and the linear set of
equations can be solved in a distributed manner. There
are two possible solutions. Usually, is nonsingular in
which case it is easy to verify that the solution is

(26)

(27)

where the message is defined as

(28)

Otherwise, if is singular then the solution is

(29)

(30)

since

(31)

due to Lemma 3 in the appendix. The singular case is highly
unlikely as the probability of (29) in continuous models is zero.
However, for finite register length computations this condition
needs to be checked.

E. Solution: Higher Order Components

In practice, dimensionality reduction involves the projection
of the data into the subspace of a few principal components. A
standard approach for computing higher order components is
the deflation method, i.e., iteratively solving for the first order
component of deflated (modified) matrices. We now apply this
approach to DPCA.

The th order principal component is defined as the linear
transformation which is orthogonal to the preceding compo-
nents and preserves maximal variance. It is given by
where is the th principal eigenvector of . In the concen-
tration domain, is the eigenvector associated with , the

th smallest eigenvalue of . These high order eigenvalues and
eigenvectors can be found by iteratively applying the previous
algorithms to deflated versions of . Specifically, let

(32)

be the ordered eigenvalues of with corresponding eigenvalues
. We define the deflated matrix as

(33)

where , and is a sufficiently large
positive constant. It is easy to verify that and have the same
eigenvectors, and that the unordered eigenvalues of are

(34)

Assuming that is sufficiently large, the th smallest eigenvalue
of is equal to the minimal eigenvalue of and can be found
as the solution to

(35)

The matrix does not necessarily satisfy the sparse block struc-
ture of , and we cannot use Proposition 1 directly. Fortunately,
this proposition can be easily modified to address low rank per-
turbations.

Proposition 2: Let be a symmetric matrix with structure

(36)

Then, the constraint

(37)

is equivalent to the following pair of constraints

(38)

(39)
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where

(40)

(41)

and the message matrix is defined as

(42)

Proof: The proof is similar to that of Proposition 1 and
therefore omitted.

Thus, the method in Section II-C can be adjusted to find the
th smallest eigenvalue. The only difference is that the mes-

sages are slightly larger than before. Each message is a matrix
of size instead of .

F. Solution: Communication and Computation Complexity

The main advantage in DPCA is its distributed implementa-
tion and reduced communication requirements. Classical PCA
requires each node to send all of its samples to a centralized pro-
cessing unit which receives these samples and computes the
global sample covariance. Once this matrix is computed there is
no need for further communication. On the other hand, DPCA
partitions the nodes into overlapping cliques. Each clique has a
local processing terminal that collects its data (a total of
samples where ) and computes its local sample co-
variance. Next, each eigenvalue computation requires additional
message passing of variables where is the
number of iterations and is the eigenvalue order. Thus, DPCA
is advantageous when a few conditions are met. First, the cost
of local communication within the clique should be negligible
in comparison to global communication. The second condition
is that the number of coupling nodes and the number of
required principal components are sufficiently small so that

.

III. DPCA IN DECOMPOSABLE GRAPHS

We now proceed to the general problem of DPCA in decom-
posable graphs. In the previous section, we showed that DPCA
can be computed in a distributed manner if it is a priori known
that and are conditionally independent given . Graph-
ical models are intuitive characterizations of such conditional
independence structures. In particular, decomposable models
are special graphs that can be recursively subdivided into the
two cliques graph in Fig. 1. This section gives the formal def-
initions of decomposable graphs [16], followed by a recursive
application of the previous two-clique DPCA algorithm.

An undirected graph is a set of nodes con-
nected by undirected edges . A graph (or subgraph) is com-
plete if all of its nodes are connected by an edge. A subset
separates and if all paths from to intersect . A
triple of disjoint subsets of is a decomposition of
if , separates and , and is complete. Finally,

Fig. 1. Graphical model with two cliques modeling a 3 node network in which
� and � are conditionally independent given �.

a graph is decomposable if it is complete, or if it can be re-
cursively decomposed into two decomposable subgraphs
and .

It is convenient to define a decomposable graph using cliques.
A clique is a maximal complete subset of nodes. Any decom-
posable graph can be represented using a sequence of cliques

which satisfy a perfect elimination order. An im-
portant property of this order is that separates from

where

(43)

(44)

(45)

For example, the two cliques graph in Fig. 1 is a simple decom-
posable graph with , , ,

, and . Accordingly,
separates from .

Based on these definitions, we can now consider graphical
models. A random vector satisfies the Markov property with
respect to , if for any pair of nonadjacent nodes the corre-
sponding pair of random variables are conditionally indepen-
dent of the rest of the elements in . For the Gaussian distribu-
tion, this definition results in sparsity of the concentration ma-
trix , i.e., for any pair of nonadjacent nodes.
When is decomposable, has an appealing block sparsity
pattern.

Similarly to Section II-B, global ML estimation of the con-
centration matrix in a decomposable Gaussian graphical model
has a simple closed form, which can be computed in a dis-
tributed manner [16, Prop. 5.9, p. 146]

(46)

where is the sample covariance defined in (6) and the zero
fill-in operator outputs a matrix of the same dimension as

where the argument occupies the appropriate subblock and
the rest of the matrix has zero valued elements. (See (5) for
a two clique example, and [16] for the exact definition of this
operator.)

The eigenvalue computation can also be implemented in a
distributed manner by recursively applying Proposition 1. In-
deed, Proposition 1 shows that the eigenvalue inequality

(47)

is equivalent to two adjusted local eigenvalue inequalities

(48)

(49)
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where

(50)

(51)

and is a message as in (19). Next, we can apply Schur’s
Lemma again and replace (49) with two additional inequalities:

(52)

(53)

(54)

where and are similarly defined. We
continue in an iterative fashion until we obtain decoupled
eigenvalue inequalities. Thus, the feasibility of a given can be
checked in a distributed manner via message passing between
the cliques.

In Algorithm 2 displayed below we provide a pseudo code
for DPCA which solves for using the bisection method. In
the code, we keep constant and use the variable to denote
its modified versions which were previously labeled using tag
superscripts. Given initial bounds

(55)

the algorithm is guaranteed to find the minimal eigenvalue up to
any required tolerance within iterations. Each
iteration consists of up to messages through the matrices

whose dimensions are equal to the cardinalities of
for . A simple choice for the bounds is
since is positive definite, and

(56)

as proved in Lemma 2 in the Appendix.

Algorithm 2: Bisection line search for DPCA

Given a principal eigenvalue , its corresponding eigenvector
can be computed by solving where .
Similarly to Section II-D, we begin with and partition

into and . We test the singularity of . If it is
singular, then is associated with . Otherwise, we send the
message to and repartition it. We continue until
we find the associated remainder or reach the first clique.
Then, we compute the corresponding local null vector and begin
propagating it to the higher remainders as expressed in (27). A
pseudo code of this method is provided in Algorithm 2.

Algorithm 2 can be easily extended to compute higher order
eigenvalues through application of Proposition 2. For this pur-
pose, note that the matrix in (39) has the same structure as (36)
and therefore can be recursively partitioned again. The only dif-
ference is that the rank of the modification is increased at each
clique and requires larger message matrices. Thus, the algo-
rithm is efficient as long as the size of the separators , the
number of cliques and the number of required eigenvalues

are all relatively small in comparison to . Given any eigen-
value (first or high order), Algorithm 3 requires one backward
and one forward sweep through the cliques in order the compute
its associated eigenvector.

Algorithm 3: Eigenvector computation

IV. SYNTHETIC TRACKING EXAMPLE

We now illustrate the performance of DPCA using a
synthetic numerical example. Specifically, we use DPCA to
track the first principle component in a slowly time varying
setting. We define a simple graphical model with 305 nodes
representing three fully connected networks with only 5
coupling nodes, i.e., ,

, and
. We generate 5500 length

vectors of zero mean, unit variance and
independent Gaussian random variables. At each time point,
we define through (46) using a sliding window of
realizations with 400 samples overlap. Next, we run DPCA
using Algorithm 1. Due to slow time variation, we define the
lower and upper bounds as the value of the previous
time point minus and plus 0.1, respectively. We define the
tolerance as corresponding to 8 iterations. Fig. 2
shows the exact value of the minimal eigenvalue as a function
of time along with its DPCA estimates at the th, th and

th iterations. It is easy to see that a few iterations suffice
for tracking the maximal eigenvalue at high accuracy. Each
iteration involves three EVDs of approximately 105 105
matrices and communication through two messages of size
5 5. For comparison, a centralized solution would require
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Fig. 2. Iterations of the DPCA bisection line-search in a time varying scenario.

Fig. 3. Map of the Abilene network.

sending a set of 100 length 305 vectors to a central processing
unit which computes an EVD of a matrix of size 305 305.

V. APPLICATION TO DISTRIBUTED ANOMALY DETECTION

A promising application for DPCA is distributed anomaly de-
tection in computer networks. In this context, PCA is used for
learning a low dimensional model for normal behavior of the
traffic in the network. The samples are projected into the sub-
space associated with the first principal components. Anomalies
are then easily detected by examining the residual norm. Our
hypothesis is that the connectivity map of the network is related
to its statistical graphical model. The intuition is that two dis-
tant links in the network are (approximately) independent con-
ditioned on the links connecting them and therefore define a
graphical model. We do not rigorously support this claim but
rather apply it in a heuristic manner in order to illustrate DPCA.

Following [12], [15], we consider a real world dataset of
Abilene, the Internet2 backbone network. This network carries
traffic from universities in the United States. Fig. 3 shows its
connectivity map consisting of 11 routers and 41 links (each

Fig. 4. Projection into anomaly subspace with and without graphical models.

line corresponds to two links and there are additional links from
each of the nodes to itself). To avoid confusion, we emphasize
that the 41 nodes of the conditional independence graphs pro-
posed below are the Abilene links and not the routers as may be
implied from Fig. 3.

Our first proposed graph, denoted by , consists of
two cliques: an eastern clique consisting of the separating links
DNVR-KSCY, SNVA-KSCY, and LOSA-HSTN and the links
to their east, and a western clique consisting of the separating
links and the links to their west. Unlike the topology of Fig. 3, all
the nodes are connected within each clique of our model. This
graph corresponds to a decomposable concentration matrix with
a sparsity level of 0.33. Our second proposed graph, denoted
by , is obtained by redividing the eastern clique again
into two cliques separated through four coupling links: IPLS-
CHIN and ATLA-WASH. Its sparsity level is 0.43. Finally, for
comparison we randomly generate an arbitrary graph
over the Abilene nodes, with an identical structure as
(three cliques of the same cardinalities), which is not associated
with the topology of the Abilene network.

In our experiments, we learn the 41 41 covariance matrix
from a 41 1008 data matrix representing 1008 samples of the
traffic on each of the 41 Abilene links during April 7–13, 2003.
We compute PCA and project each of the 1008 samples of di-
mension 41 into the null space of the first four principal compo-
nents. The norm of these residual samples is plotted in the top
plot of Fig. 4. It is easy to see the spikes putatively associated
with anomalies. Next, we examine the residuals using DPCA
with , and . The norms of the resid-
uals are plotted in the three lower plots of Fig. 4, respectively. As
expected, the topology based plots are quite similar with spikes
occurring at the times of these anomalies. Thus, we conclude
that the decomposable graphical models for Abilene are a good
approximation and do not cause substantial loss of information
(at least for the purpose of anomaly detection). On the other
hand, the residual norm using the random graph is a poor ap-
proximation as it does not preserve the anomalies detected by
the full nondistributed PCA. These conclusions are supported
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Fig. 5. Absolute error in projection into anomaly subspace with different
graphical models.

in Fig. 5 where we show the absolute errors of DPCA with re-
spect to PCA using the different graphical models. It is easy
to see that results in minimal error, provides
a reasonable tradeoff between performance and computational
complexity (through its increased sparsity level), while graph

is clearly a mismatched graphical model and results in
significant increase in error.

VI. DISCUSSION AND FUTURE WORK

In this paper, we introduced DPCA and derived a decen-
tralized method for its computation. We proposed distributed
anomaly detection in communication networks as a motivating
application for DPCA and investigated possible graphical
models for such settings.

Future work should examine the statistical properties of
DPCA. From a statistical perspective, DPCA is an extension
of classical PCA to incorporate additional prior information.
Thus, it would be interesting to analyze the distribution of
its components and quantify their significance, both under
the true graphical model and under mismatched models. In
addition, DPCA is based on the intimate relation between the
inverse covariance and the conditional Gaussian distribution.
Therefore, it will also be important to assess its sensitivity to
non-Gaussian sources. Finally, alternative methods to ML in
singular and ill conditioned scenarios should be considered.

Another interesting extension of DPCA is its generalization
to nondecomposable graphical models. Maximum likelihood
estimation in nondecomposable models does not have a closed
form solution but can still be implemented using the iterative
proportional fitting algorithm [13], [16]. Future work could
focus on similar iterative methods for eigenvalue computations
in arbitrary graphs.

APPENDIX

Lemma 2: Let be a symmetric matrix, and let be a
subset of its indices. Then, .

Proof: For simplicity, we assume that is the subset of the
first indices. The proof is a simple application of the Rayleigh
quotient characterization of the minimal eigenvalues:

(57)

(58)

(59)

(60)

(61)

where is the optimal solution to (60).

Lemma 3: Let be a positive semidefi-

nite matrix, and let be a vector in the null space of . Then,
is also in the null space of .

Proof: Due to the semidefiniteness, we can decompose
as

(62)

Therefore, and . On the other hand,
and

(63)

as required.
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