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Synthetic Aperture Radar Autofocus
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Abstract—Autofocus algorithms are used to restore images in
nonideal synthetic aperture radar imaging systems. In this paper,
we propose a bilinear parametric model for the unknown image
and the nuisance phase parameters and derive an efficient max-
imume-likelihood autofocus (MLA) algorithm. In the special case of
a simple image model and a narrow range of look angles, ML A co-
incides with the successful multichannel autofocus (MCA). MLA
can be interpreted as a generalization of MCA to a larger class
of models with a larger range of look angles. We analyze its ad-
vantages over previous extensions of MCA in terms of identifia-
bility conditions and noise sensitivity. As a byproduct, we also pro-
pose numerical approximations to the difficult constant modulus
quadratic program that lies at the core of these algorithms. We
demonstrate the superior performance of our proposed methods
using computer simulations in both the correct and mismatched
system models. MLA performs better than other methods, both in
terms of the mean squared error and visual quality of the restored
image.

Index Terms—Autofocus, Fourier-domain multichannel auto-
focus (FMCA), maximum-likelihood estimation, multichannel
autofocus (MCA), phase gradient autofocus (PGA), semi-
definite relaxation (SDR), sharpness-maximization autofocus,
spotlight-mode synthetic aperture radar (SAR), successive cancel-
lation approach (SCA).

1. INTRODUCTION

spotlight-mode synthetic aperture radar (SAR) provides
A a high-resolution microwave image using an antenna of
small aperture. High resolution in the range direction is achieved
through traditional pulse compression, whereas high resolution
in the cross-range direction is obtained by illuminating the target
from many viewing angles. The collected return signals can be
conveniently modeled as polar samples of the Fourier transform
of the target’s reflectivity function. Image reconstruction is typ-
ically accomplished via the traditional polar formatting algo-
rithm [1], [2]. In practice, a main challenge in SAR imaging is
the unavoidable demodulation timing error in the radar receiver.
The timing error arises from inaccurate range measurements or
unknown signal propagation effects. This error causes the recon-
structed image to suffer distortion, which is sometimes so severe
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that the image is completely unrecognizable. The effect of the
timing error can be well approximated as an unknown phase cor-
ruption in the collected Fourier data that varies with look angle
but is constant for all data collected from a fixed angle. Auto-
focus algorithms use signal processing techniques to restore the
image in the presence of these phase errors [1], [3], [4].

SAR autofocus involves the estimation (reconstruction) of
the unknown image corrupted by noise and unknown nuisance
phase distortions. For this purpose, it is common to impose
additional constraints, either on the underlying image or on the
imaging system. Some early spotlight-mode SAR autofocus
algorithms assume that the unknown autofocus phases can be
described by a finite polynomial expansion [5], [6]. The first
successful autofocus method to be widely applied in practice is
phase gradient autofocus (PGA) [7]. PGA assumes that the un-
derlying scene consists of isolated point reflectors and that the
SAR system collects data across a narrow range of look angles.
Another class of autofocus algorithms compensates the phase
errors by maximizing the sharpness of the reconstructed image
[8]. Popular metrics that measure image sharpness include
entropy and various powers of the image intensity [9]. These
sharpness-maximizing autofocus algorithms tend to favor
sparse images such as collections of point scatterers. While the
restoration results obtained using these approaches often are
outstanding, the techniques sometimes fail to produce correct
restorations when the underlying scene is poorly described by
the implicitly assumed image model. Recently, a promising
multichannel autofocus (MCA) has been proposed in [10]
assuming a small range of look angles and prior knowledge of a
region in the image with a small pixel value (low-return region).
This image support constraint can be enforced by the antenna
pattern found in any practical system. Due to its promise, MCA
was then generalized to allow for a larger range of look angles
via Fourier-domain multichannel autofocus (FMCA) [11], [12].

In this paper, we propose a novel autofocus reconstruction al-
gorithm that is based on a bilinear parametric model. Following
[13]-[16], we consider a standard linear model for the reflec-
tivity function using a finite vector of unknown parameters 6.
On the other hand, similar to [10]-[12], we propose a linear
model for the SAR acquisition system involving a vector of un-
known phase distortions 4. Together, we obtain a bilinear model
involving the unknown parameters {6, v} contaminated by ad-
ditive noise. We analyze the conditions for identifiability and
solvability of the problem in the noiseless case and then derive
a novel maximume-likelihood autofocus (MLA) method to deal
with noisy observations.

MLA can be interpreted as a generalization of MCA to a
larger class of models and a wider range of look angles. In the
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simplest setting, namely, an impulse reflectivity model with
a known support constraint and a small range of look angles,
MCA coincides with MLA. However, our results show that
MCA’s FMCA extension is suboptimal in comparison to MLA.
The latter requires weaker identifiability conditions, and small
error analysis reveals that it is significantly less sensitive to
noise. Furthermore, MLA is more general from the standpoint
that it does not require the existence of a prior low-return
region. In some sense, FMCA may be considered more robust
as it does not rely on any explicit parametric reflectivity model.
However, the numerical simulation results presented in [11]
and [12] are based on a special case of our model, and we
present numerical evidence that MLA is superior to FMCA,
also under mismatched models.

From a computational complexity perspective, MCA, FMCA,
and MLA are very similar. At their core is the solution to a con-
stant modulus quadratic program (CMQP). This is an NP-hard
problem, which requires approximations that tradeoff accuracy
with complexity [17], [18]. We review the classical approx-
imation based on eigenvalue relaxation (EVR) and review a
state-of-the-art approximation based on semidefinite relaxation
(SDR) [19], [20]. Next, we propose a third approximation to
CMAQP, which is based on a successive cancellation approach
(SCA). Successive cancellation, also known as decision feed-
back, was originally derived in the context of multiuser detec-
tion [17]. CMQP is very similar to maximum-likelihood (ML)
multiuser detection with the only difference being that unknown
phases in digital communication belong to a finite constella-
tion set. We extend this method to allow for arbitrary unknown
phases. Numerical results show that SCA provides accuracy
close to SDR, while its computational complexity is similar
to EVR. Thus, it is a promising approximation to MCA and
FMCA, as well as to our newly proposed MLA.

A related approach was taken in [21]. There, prior knowledge
of the low-return region is crucial to the problem formulation,
whereas, in this work, we do not require such information.

The organization of this paper is as follows. In Section II,
we introduce the proposed bilinear problem formulation. In
Section III, we discuss the conditions for perfect reconstruction
in the noiseless case. In Section IV, we derive MLA and dis-
cuss its implementation. In Section V, we compare MLA and
FMCA through their small error analysis. Simulation results are
presented in Section VI, and concluding remarks are provided
in Section VII.

In this paper, a capital boldface letter A denotes a matrix, and
a lowercase boldface letter a denotes a column vector. conj(a)
denotes the complex conjugate of a. [a; b] denotes a column
vector formed by concatenating vector a on top of vector b.
Superscript # denotes the Hermitian transpose, and T denotes
the Moore—Penrose pseudo-inverse. tr(A) represents the trace
of matrix A, and Diag(a) is the diagonal matrix with elements
of vector a on the main diagonal. rank(A) denotes rank of ma-
trix A, and N'(A) denotes the null space of A. For an index
set s, As(A”®) represents the submatrix of A formed by the
rows(columns) of A indexed by s. For a complex number c,
|| represents the magnitude of ¢, and Z(c¢) represents the phase
of c.
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II. PROBLEM FORMULATION

In this section, we present a parametric bilinear model for the
SAR autofocus problem.

A. SAR Reflectivity Function Model

SAR systems image a continuous target reflectivity function
denoted by 7(x,y). Most reconstruction methods assume a fi-
nite parametric model for r(x,y). This parametric model can
be mathematically described as

D
r(z,y) = bihi(z,y) (1)

i=1
where 8 = [0, ...,0p]" is a complex-valued parameter vector
of dimension D, and h;(x,y) foréi = 1,..., D are known com-

plex-valued functions. Common physical models that can be
characterized by (1) are as follows.

(A) Impulse model: r(x,y) is decomposed into D resolution
cells, each with size dz x dy, where dx and dy are two
known constants determined by the SAR radar specifi-
cation. Any two point reflectors within a resolution cell
cannot be well resolved. With this framework, one way of
approximating a SAR system is to use a discrete model,
where a single complex number is assigned to each res-
olution cell. This complex number, which is denoted by
6;, represents the sum of the point reflectors’ reflectivities
within a resolution cell and can be simply viewed as an
impulse located at the center of the cell. This leads to the
following definition:

hi(z,y) = 6(x — i dz, y — vi dy) @

where §(-) denotes the standard Dirac delta function, and
u; and v; are the spatial indexes for the 7th resolution cell.

(B) Sampling model: In this model, @ represents discrete
samples of r(z,y), and h;(z,y) represent the sampling
kernel. A typical assumption in this model is a band-lim-
ited reflectivity function, which involves a finite number
of parameters. Previous works that use this model include
[13]-[15].

(C) Discrete speckle model: In this model, SAR imaging is
viewed as a statistical inverse problem, and it is recog-
nized that it is possible to reconstruct only a speckle ver-
sion of r(x,y). Here, model (1) can be interpreted as an
approximate model for the speckle image [1], [4].

(D) Additional prior information: Additional linear con-
straints may be incorporated into the model if prior
information about the underlying scene is known. For
example, a previous work assumed knowledge of a zero
(or low) valued region in the underlying scene [10],
[11]. Such information corresponds to elements in 6 with
known zero values. Alternatively, this can be translated
into a linear model of reduced dimension (smaller value
of D).

B. SAR Acquisition Model

Under the far-field assumption and using a narrowband
transmitted waveform, the collected SAR data, which are
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denoted by G[m,n|, can be modeled as the Fourier trans-
form of r(z,y) evaluated at nonuniform frequency locations
(Fplm,n], Fy[m,n]) form =1,..., M andn = 1,...,N,
i.e.,

Glm,n] = //T(x,y)e’ﬂ”(mm’"]”Fy[m’"]”)dxdy- 3)

Substituting (3) back into our parametric model for the reflec-
tivity function yields

G[m,n]:ZHi // hi(z,y)e 2 FelmmlotEy mnly) gy gy
Z 4

Using vector notation
g = vec(G) 5)

there is a simple linear relation between 8 and g, which can be
expressed as

g=1L# (6)
where L is a M N x D matrix with elements

Lk, 1] = / / () e=32m(Eolatl o+ By b1 9) gy gy
a:|._l/]'\fj7 b =mod(l, N) (7

where |- | denotes “integer part of,” and mod(l, N') denotes I
modulo N.”

Classical SAR reconstruction amounts to inversion of this
linear transformation to reconstruct # as

6=Lig. 8)

In the special case of model (A) and when SAR operates
across a narrow range of look angles, F, and F} can be well
approximated as a Cartesian grid; thus, the matrix L is simply
a discrete Fourier transform (DFT) matrix, and inversion is
performed using an efficient fast Fourier transform (FFT) [10].
Otherwise, it is common to approximate this pseudo-inversion
via interpolation to a uniform Cartesian grid, followed by FFT.

The above SAR model is too idealistic for practical systems.
We now extend the model and introduce signal distortion and
noise. Specifically, a more realistic observation model is

G[m,n] = G[m,n] ™" £ Nm, n] )

where ¢[m, n] are autofocus phase distortions, and N [m, n] rep-
resents additive noise. The phase distortions result from inaccu-
rate range measurements or unknown signal propagation delays.
The polar-format Fourier data are contaminated with unknown
phase errors that cause the reconstructed image to suffer distor-
tion. The measurements at a given look angle suffer from the
same unknown delay, and, under a narrowband assumption, this
corresponds to an unknown phase. The delays, and their asso-
ciated phases, change between different look angles. Thus, fol-
lowing [1], we let

gb[mﬂl] = §b(m)7 1

3
Il

... M. (10)
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In addition, without loss of generality, we define

(M) =0 1D
and focus on estimating ¢(1),...,¢(M — 1), as we are only in-

terested in the phase differences (PGA in [7] is also based on this
approach). The additive noise samples N|[m,n] are assumed to
be independent, zero mean, complex normal random variables
with variance o2.

In vector notation, we obtain the following model:

g=R(y)LO+n (12)
where v = [¢/%; 1], n = vec(N) and
R(’Y):Dlag Yis-- -5 Vi, "7’7M—17"'7’YM—1717"'71
——r
N terms N terms N terms
13)
Define I' as the space where 7 lies, i.e.,
P:{77A1217 |’YL|:1/Z:177M_1} (14)

Then, the SAR autofocus problem can be summarized as: Find
0 (and the nuisance parameters o4 € I') using the observations
g.

For completeness, we note that a more accurate problem for-
mulation would treat the magnitudes and phases of the com-
plex variables, 6, separately. Specifically, other work models the
magnitudes and phases of the reflectivity function differently
[22], but our goal is only to reconstruct the magnitude informa-
tion for display [4]. For simplicity and tractability, we use a joint
model and estimate both magnitude and phase together. Future
work will pursue the more advanced formulation.

III. NOISELESS CASE

The autofocus problem is difficult due to the nonlinear cou-
pling between the unknown reflectivity parameters 8 and the un-
known autofocus phases ¢. Even if we parameterize the phases
via «y (rather than the more complicated ¢ characterization),
there is a bilinear coupling between 8 and «y. Therefore, in order
to understand when can this coupling be resolved, we begin by
considering the problem in the noiseless case, i.e., n = 0.

A. Perfect Reconstruction

Theorem 3.1: In the noiseless case and when L has full
column rank, perfect reconstruction of 4 and @ from g is
possible if and only if there is a unique vector 4 such that

4 eTNN ((1 - LLT)Y) (15)
where
g1..N 0 e 0
. 0 EN+1..2N °° 0
Y = ) . (16)
0 0 EMN—N+1..MN
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8 = L'R(7)g. (17)
Proof: Our first step is to decouple 4 and 6 from (12). This
is done by first recognizing that, when L has full column rank,
we can write
#=L'R(y) ‘g (18)
Note that, in this case, R(y)™! = R(y)¥. Substituting (18)
back into (12), we have

(T- R(LL'R(r) ) g =0 (19)
or
(I-LLHR(y) ‘g =0. (20)
We can rewrite (20) as
(I-LLHY4=0 1)

where 4 = conj(7), and Y is defined in (16). Together with the
requirement y € T', this yields the required condition. [ |

In practice, our noiseless autofocus algorithm takes Y as an
input and searches for 7 that satisfies (15). This search is difficult
due to the nonconvex set I'. We propose to relax it, and choose ¥
as any properly normalized vector in N'((I — LL)Y) rounded
toI'.

B. Comparison to Previous Methods

We now compare Theorem 3.1 with its competing MCA and
FMCA methods. Both MCA and FMCA are also based on the
noiseless model

g = R(y)Lo (22)
and it is a priori known that some of the elements of # are zero
valued, i.e.,

6,=0 (23)
where a is a known set of indices. FMCA searches for a vector
4 € T such that the reconstruction satisfies (23), i.e.,
[L'R(¥)'g], =0. (24)
In terms of Y and T', the condition for the perfect reconstruction
of (22) is equivalent to requiring a unique vector 4 such that
4 eTnN ([LT]GY) : (25)

In our proposed parametric model, the prior information of
the set a corresponds to a reduced model. More specifically, let
a denote the complement of a so thata Na = @, a Ua =
{1,..., D}, and we can partition L into

L= [L7 LY. (26)
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This gives us the effective model

& =R(y)L";. 27)
Its necessary and sufficient reconstruction condition is a unique
vector satisfying
4ernN ((I — [LALA)) Y) . (28)
The following theorem compares these conditions in the
noiseless case.
Theorem 3.2: If L is full column rank (as required for recon-
struction in the focused case), then
N ((1 — [LALA) if) cN ([LT]aY) .9
If LL is also invertible, then conditions (25) and (28) are equiva-
lent since

N((- ) ) =& (L1.Y). 6o

Proof: First, let s € N((I — [L%][L?]")Y) so that (I —
L%[L"]")Y's = 0. This implies that Y's is in the column space
of L%, and therefore, there exists a vector z such that Ys =
L%z = L[z; 0]. We have

[LY.Ys = [L7],L[z; 0] = [L'L[z;0]] = [z0]. =0 (31)
hence, s € N([L'],Y), and we have the desired result.

On the other hand, assume I: is also invertiblg, so that
Lt = L' Letv € N([L7!,Y) and ' = L~Yv. Since
[L-Y.,YVv = 0, we have #, = 0 and Yv = L%6.. Now, we
have

(I - [LY[LA]T) Yv = Yv - L (L) [L%) ' [L7 Y
_ L(ze; _La ([La]HLa)*l [La]HL(zo:_l
=0 (32)

hence, v € N'((I — [L[L])Y). [
Under the MCA framework, the matrix L is a square, invert-
ible, and unitary DFT matrix; therefore, (30) is satisfied, and we
conclude that MCA is optimal in the noiseless case in the sense
that it is equivalent to Theorem 3.1 and that perfect reconstruc-
tion is achieved. On the other hand, its generalization to non-
square matrices via FMCA is suboptimal and requires a condi-
tion that is too strong. In summary, we interpret Theorem 3.1 as
the correct extension of MCA to nonsquare matrices and gener-
alized parametric models with or without low-return regions.

IV. MAXIMUM-LIKELIHOOD ESTIMATION

The previous section addressed conditions and methods for
perfect reconstruction in the noiseless case. In practice, the mea-
surements are usually corrupted by additive noise, as expressed
in (12). We now assume that the conditions in Theorem 3.1 hold
so that the problem is solvable, and we extend the previous re-
sults to the noisy case based on an ML framework.

ML is the classical statistical method for estimating determin-
istic unknown parameters. In the presence of Gaussian noise,
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the method reduces to nonlinear least-squares estimation. Its
main advantage is that it is known to minimize the mean squared
error among all unbiased estimators in low noise conditions, i.e.,
small error analysis shows that MLA attains the Cramer—Rao
bound (CRB) on the estimation error. Specifically, we define
the MLA estimator as the solution to

(Y, O] = argmin [|g — R(’Y)L0||2
~€er,0

arg min ||R71('y)g - L0||2
Y€l

(33)

where we have used the invariance of the norm to unitary trans-
formation. Now, we can easily solve for 1,

Oy = LR (7)g. (34)
Substituting (34) back into (33), we have
2

i, = argmin (- LLOR- (g 63

yel

- 2
— argmin H(I - LL*)YyH (36)
conj(v)er

where we have used the notation in (16). As will be de-
tailed shortly, this problem is a CMQP, which is generally
NP-hard [17], [18] but can be approximated well under suitable
conditions.

A. Comparison to Previous Methods

The previous MCA and FMCA methods also recognized that
the measurements may be noisy and proposed to approximate
(24) via minimizing the energy in the low-return region of the
reconstructed image, i.e.,

N . _ ~112
YrMca = argmm”[LT]aR "(gl| (37)
yer
2
— argmin H[LT]GY'yH . (38)
conj(y)er’

Similar to MLA, this is an NP-hard CMQP optimization
problem, which will be discussed next.

Comparing (36) with the reduced model L% to (38), it is
easy to see the similarity between MLA and FMCA. However,
it is interesting to note the different interpretations: FMCA
uses the Euclidean norm in an attempt to minimize energy,
whereas MLA chooses this norm due to the Gaussian noise.
In this sense, MLA is easier to generalize to other scenarios
involving different noise characteristics, e.g., correlated noise
or non-Gaussian noise.

B. Numerical Approximations for CMQP

We have shown that both MLA and its preceding MCA
methods reduce to the solution of a CMQP. We now address the
numerical approximation of this difficult optimization problem.
For this purpose, we define a general CMQP as

¢ = arg min | Ay||>. (39)
yer
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Both (36) and (38) reduce to this model by choosing
A = conj((I- LLNY) (40)
and
A = conj([L',Y) (41)
respectively.

The first and simplest approach to CMQP is based on eigen-
decomposition or EVR. This is the technique used in the original
MCA and FMCA methods. EVR replaces the difficult feasible
set I with

{v: hPP=M}. (42)
The solution to this relaxation has a simple closed-form solu-
tion, namely, the properly scaled right singular vector %, (A)
associated with the minimum singular value of A. The approx-
imate 4 is

y— e Litmin (A) )

v (43)

EVR requires low computational complexity but is very sensi-
tive to noise.

A second and more accurate approximation to CMQP is SDR.
This technique was recently applied to MCA and FMCA in
[20]. SDR reformulates CMQP as a quadratically constrained
quadratic program. Thus

min  xZCx
xec]\[

st Ixi|l=1, i=1,...,.M (44)
where C = A A. It then lifts the vector variable into the space
of positive semidefinite matrices, i.e.,

Xelél}}lx Ny tr(CX)
s.t Xi=1, i=1,....M
X>0
rank(X) =1 (45)

where X = xx . Finally, it relaxes the problematic nonconvex
rank-1 constraint to obtain

min tr(CX)
XeCMxM
X = 0. (46)

This last problem is a convex semidefinite program that can
be efficiently solved using standard optimization methods [23],
[24]. Once the optimal solution, X, to (46) is found, its prin-
cipal eigenvector ¥min(Xopt) is computed, and 7 is approxi-
mated as

N — e Z‘vmin (Xopt ) .

¥ (47)

More advanced SDR approximations based on randomization
are described in [19] and [20]. SDR is known to provide a tighter
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approximation to CMQP than does EVR, but its computational
complexity is significantly higher.

Finally, we propose a third numerical approximation to
CMQP based on an SCA. To our knowledge, this method has
not been applied before in the context of autofocus. Successive
cancellation, also known as decision feedback, was originally
derived in the context of multiuser detection [17]. CMQP is
very similar to ML multiuser detection, with the only difference
being that unknown phases in digital communication belong to
a finite constellation set. We now extend this method to allow
for arbitrary unknown phases.

We use the QR decomposition to factorize A = QR,, where
Q is a unitary matrix, and R is an upper triangular matrix, with
positive and real-valued diagonal elements [25]. Due to the in-
variance of the norm to unitary transformations, we obtain

Ay = [IRy”. (48)
Thus, the CMQP in (44) is equivalent to
M M 2
min ; Rimi+ k§>j Ri kv (49)

The «th term in the objective depends only on ~y; for & > 4.
Therefore, we propose to approximate (49) by minimizing each
term of the sum sequentially, starting from ¢ = M and stepping
downto: = 1. Asdefinedin I', we let vy, = 1. Each subsequent
v; is then given by the solution to

2

Moo
ik
vi+ Z R

v; = argmin
{vitlvi|=1} k=i+1
M
|- 5 gt
=e k=it (50)

where «y; for k > ¢ are already known from previous decisions.
SCA can be represented in pseudo-code as

Input: matrix A with size D x M
Output: autofocus phase estimates v € I
1R = QR(A);

29m = 1

3fori — M —1to1do

I L1= YLy, (RIEK]/RLii])we],

s

4 v=
5 end.

V. SMALL ERROR ANALYSIS

In this section, we provide small error analysis for the FMCA
and MLA methods. We define the real-valued parameter vector
as

¢= ¢, Re{07}, tm{6"}] ! (51)
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where ¢ = [¢(1),...,¢(M — 1)]7 are the autofocus phases
(recall that we assumed ¢(M) = 0). We denote by subscripts
TRUE, ML, and FMCA the true parameters, their MLA esti-
mates, and their FMCA estimates, respectively. For simplicity,
we parameterize the unknown phases using ¢ instead of 4. Fur-
thermore, we concentrate on estimating the autofocus phase er-
rors, ¢, while treating # as nuisance parameters.

Small error analysis of ML estimators in Gaussian distribu-
tions has a simple closed-form solution that is known to co-
incide with the well known CRB on the mean squared error
[26]. Let ¢y, € RV~ denote the MLA phase estimates for

d(1),...,6(M — 1). Then, the asymptotic error satisfies
E [(¢ML —¢rrue)(buL _¢TRUE>T:| ~[F~'(¢)] 1:M—1,1:M—1
(52)
where F(£) is the Fisher information matrix defined by
2
F(§) = J_zRe {I(€rrue)" IErrur)} (33)

n

where the Jacobian matrix is given by

J(€) = [jY2Diag(ej¢wm), R ([emw; 1]) L,
iR ([eﬂ’TRUE; 1]) L} (54)

with

Y =R ([ej¢TRUE; 1])

g1..N 0 e 0
0 gN+1.2N - 0
. : . (55)
0 0 SMN—N+1,..,MN

and Y is a matrix comprising the first to the (M —1)th columns
of Y. Comparing Y with Y (Y with Y2), Y (Y2) represents
noise-free data, where Y (Y2) is noise corrupted, as shown in
(12).

FMCA involves solving a nonlinear least-squares problem

&FMCA = arg min ||f(¢)]|’ (56)
ScRM 1
where
£(9) = L1, (Y1e 7% 1]). (57

Its small error analysis consists of approximating f(¢) by a first-
order Taylor series expansion about the true parameters

f(¢) ~ f(drrur) + Je(drrue) (@ — drrur) (58)

where

Je(¢rrup) = —j[L7]. Y Diag(e 7¢rnue)  (59)
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is the Jacobian matrix, and Y~2 is a matrix comprising the first
to the (M — 1)th columns of Y. Consequently, the estimate (56)
is approximated by

. . 2
Prvica ~ arg min Hq + Jf(¢TRUE)¢H (60)
¢€RM
where
q =LY [e #®rmue; 1] — T (drpup)PrruE
=[L"l.R ([€_j¢TRUE§ 1]) g — Je(drrup)PTRUE-
(61)

Since q and J¢(¢prryup) are complex-valued and ¢ is
real-valued, the solution is

. - . -1
Prvica X — [Re {Jf (¢TRUE)Jf(¢TRUE)H
xRe {th(¢TRUE)q} . (62)
Substituting (61) into (62) yields
brrica — Srrue = —ATb (63)

where

A =Re {jt{{(¢TRUE)jf(¢TRUE)}
b = Re {JF ($rnup) LR ([e=mr: 1]) g} (69

(64)

Using the low-return region constraint

LR ([eijd"“RU”; 1]) g=0 (66)

and explicitly writing out the signal term and the random noise
term in g, we get
b = Re {If ($rgup) LR ([e7#roe; 1)) n} . (67)

Using the linearity of the Jacobian in Y and the noise term, we
find

It ($rrur) = I (brrur) + Q(n) (68)
where Q(n) is a matrix that linearly depends on n and
J¢(¢rrup) = —i[L1]. Y Diag(e/#mrum).  (69)
Neglecting second and higher order noise terms, we get
b~ Re {JF ($rrop) LR ([ 1) n} . (70)

Similarly, linearizing the inverse about the true parameters
yields

A"~ [Re {JfH(¢TRUE)Jf(¢TRUE)}]_1 +Qm) (@1
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where Q(n) is a matrix that linearly depends on n. Neglecting
second and higher order noise terms, we get

&FMCA - ‘}TRUE ~ - [Re {JP(QSTRUE)Jf(ﬁbTRUE)}] o

xRe {IF ($rrup) LR ([e7#re; 1])n} . (72)
Finally, by using the identity

E [Re{Cn}Re{Cn}T] = %Re{CCH} (73)

where C is any matrix with M N columns, we have
E |:(¢FMCA — ¢rruE)(Prvca — ¢TRUE)T]

~ % [Re {JfH(quRUE)Jf(‘pTRUE)}]_l
X Re {Jfl‘{(¢TRUE)[LT]G[LT]fJf(qSTRUE)}
x [Re {If (prrup)Te(drruE) }] B

Now, we can compare the MSE of MLA phase estimation in
(52), which is also the CRB, with the MSE of FMCA phase esti-
mation in (74). The errors are plotted in Fig. 1, where it is easy to
see that FMCA is significantly more sensitive to noise. We vali-
dated this small error analysis using Monte Carlo simulation of
the estimators. The setup for this simulation was: @ was a D =
100 dimensional random uniformly distributed complex vector,
and ¢ was independent and uniformly distributed between —
and 7, except for ¢p; = 0. The sampling matrix L was gen-
erated by using an imaging scenario where the SAR operated
across a 1° viewing angle and transmitted 15 pulses (M = 15).
The receiver provided 15 samples per single pulse (N = 15).
We applied a rectangular antenna pattern on # so that it was
known a priori that 8, = 0 for a = {1,...,10,90,...,100}.
The additive noise was complex Gaussian, with a signal-to-
noise ratio (SNR) defined as

(74)

1 -
S fam])

The experimental results plotted in Fig. 1 used SDR to solve
both the MLA and FMCA phase estimation problems described
by (36) and (38), respectively.

VI. SIMULATION RESULTS

In this section, we present numerical results to illustrate the
advantages of our proposed methods in realistic SAR systems.

A. SAR Simulator

In order to test the different algorithms, we built a SAR sim-
ulator based on the bilinear model described in Section II. The
amplitudes of @ were taken from actual SAR images, whereas
the phases of # were independently generated according to a
uniform distribution between —7 and 7w (not to confuse with
the autofocus phase error). We adopted the impulse model (2)
with dz = dy = 1 for our simulation. The nuisance autofocus
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Fig. 1. MSE for MLA phase estimation compared with FMCA and MCA
phase estimation under small noise (y axis shows (1/M — 1) > (é(i) —
(T/)TRUE(i))z)-

phases were also independently generated according to a uni-
form distribution. Note that this distribution is known to be the
most challenging phase corruption. Subsequent figures present
the magnitude of the complex reconstructed reflectivity func-
tions (which are the magnitudes of @ in the impulse model).

B. Numerical Approximation to CMQP

In the first set of experiments, we compare the accuracy and
computational complexity of the three numerical approxima-
tions to CMQP. First, we synthetically construct random ma-
trices A where we can change the dimensions and noise level
in a systematic and flexible manner. Specifically, we define

y=cib
p_1. "
I
A=UP+W (76)

where ¢ is a uniform i.i.d. phase vector, ¥ is a matrix of random
uniformly distributed complex numbers, and W is a complex
additive white Gaussian noise matrix. Note that this construc-
tion guarantees that oy will be the noiseless solution to (44) with
a zero objective value.

Fig. 2 compares performance of SCA with SDR and EVR.
Here, SDR was implemented using the SeDuMi optimization
toolbox [27]. Fig. 2(a) shows the MSE of the phase estimates
(phase MSE) produced by SCA, SDR, and EVR under different
SNRs. It is obvious that SCA performs much closer to SDR
than does EVR. Fig. 2(b) shows the minimal objective function
value of (44) obtained by each of the methods under different
SNRs. We can see that SDR has the best performance; how-
ever, SCA tends to close the gap, particularly at higher SNRs.
Fig. 2(c) shows the performance dependence on the dimension
of ¢. As expected, SDR and SCA provide better scalability than
EVR, which shows a rapid increase in error when the dimen-
sion of ¢ increases. Fig. 2(d) illustrates the computational com-
plexity of the three methods by measuring the amount of time
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for each method to solve the minimization problem under a con-
stant SNR and rising dimensionality of ¢. The time (vertical)
axis of the graph is logarithmic. We can see that the complexity
of SDR grows more rapidly than for SCA and EVR. This simu-
lation suggests that SCA provides a good compromise between
EVR and SDR.

Next, in order to demonstrate the advantages in terms of vi-
sual image quality, we test the performance of SCA when used
to implement the MLA phase estimator. We used an artificial
image shown in Fig. 3(a) and the following imaging scenario:
the SAR radar operated across a 2° range of look angles and
transmitted 50 pulses (M = 50). The receiver provided 50 sam-
ples per single pulse (N = 50). Complex Gaussian noise, with
SNR = 15 dB, was added to the perfectly focused image. Here,
SDR was implemented using the algorithm in [28]. Fig. 3 shows
the image reconstructed by various methods. Fig. 3(b) shows
the reconstruction by MLA, using SDR (MLA-SDR), whereas
the reconstructions by MLA-SCA and MLA-EVR are shown
in Fig. 3(c) and (d), respectively. We can easily see the im-
proved image enhancement of MLA-SDR and MLA-SCA over
MLA-EVR. The improved performance is also apparent in the
MSE:s of the autofocus phase estimates, which decreased from
0.7364 for MLA-EVR to 0.2103 for MLA-SCA and 0.1096 for
MLA-SDR. It took 0.1263 s using MATLAB on a standard PC
for MLA-SDR to find the phase estimates and only 0.0054 s for
MLA-SCA and MLA-EVR.

C. Performance of MLA

In the second set of experiments, we start with showing the
full strength of MLA by comparing it with PGA and sharp-
ness-maximization methods. Hereafter, MLA was implemented
with SDR using the interior-point method developed in [28].
A SAR image, shown in Fig. 4(a), was obtained from Sandia
National Laboratory. We adopted a scenario where the radar
transmitted 50 pulses (M = 50) and the receiver provided 50
samples per single pulse (N = 50). The hypothetical SAR
operated across a 2° range of look angles. No prior information
about the image was used by the MLA estimator, i.e., MLA
considered the image to be arbitrary. For the sharpness-max-
imization method, we used negative entropy as the sharpness
metric. The perfectly focused image with additive noise of
SNR = 10 dB is shown in Fig. 4(a). Because no low-return
region can be found, FMCA cannot be applied here. The MLA
reconstructed image is shown in Fig. 4(c) with a phase MSE
of 0.0148. The MLA reconstructed image for SNR = 5 dB
is shown in Fig. 4(d) with a phase MSE of 0.1728. The PGA
image restoration for SNR = 10 dB and SNR = 5 dB are
shown in Fig. 4(e) and (f), respectively. The sharpness-max-
imization method image restoration for SNR = 10 dB and
SNR = 5 dB are shown in Fig. 4(g) and (h) with phase MSE
0.7815 and 0.9346, respectively. Note that, since PGA only
produces a reconstructed image, no phase MSE is computed.

D. Comparison of MLA With FMCA

In the third set of experiments, we compared MLA with
FMCA. We adopted a SAR scenario with a wide range of look
angles, which is more challenging than the narrow range of
look angles considered earlier. We used a SAR image obtained
from the MSTAR SAR database [29]. The focused image is
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Fig. 2. Performance of SCA compared with SDR and EVR: (a) MSE of optimal solution found by SCA, SDR, and EVR as a function of SNR; (b) optimal objective
function value found by SCA, SDR, and EVR as a function of SNR; (c) optimal objective function value found by SCA, SDR, and EVR as a function of problem
size; and (d) computational time required by SCA, SDR, and EVR as a function of problem size.

shown in Fig. 5(a). We applied a rectangular antenna pattern
to the image so that the first and last columns were zero, i.e.,
a known index set o that indexes the low-return region was
known a priori to FMCA so that §, = 0. For MLA, the set a
effectively reduced the dimension for 8. Note that knowledge
of the antenna pattern (low-return region) is required only by
FMCA, not MLA. We adopted an imaging scenario where
the radar was collecting data across 6° and M = N = 80.
The phase-corrupted image is shown in Fig. 5(b). The images
restored by MLA for SNR = 10 dB and SNR = 5 dB are
shown in Fig. 5(c) and (d) with phase MSE equal to 0.3697
and 0.5521, respectively. The images restored by FMCA for
SNR = 10 dB and SNR = 5 dB are shown in Fig. 5(e) and (f)
with phase MSE equal to 0.6690 and 0.8723, respectively.

E. Robustness Against Model Mismatching

In this last set of experiments, we examine the robustness
of MLA against model mismatching. MLA is derived from
the proposed parametric model, and we have analytically and
experimentally demonstrated its advantages under the proposed
model. However, FMCA does not explicitly assume such a
model, and it is important to investigate the performance of
MLA when there is a model mismatch. We continue with a
similar setup, and the estimators are implemented as before.

©

Fig. 3. Restored image using MLA-SDR, MLA-SCA, and MLA-EVR: (a) Fo-
cused image with SNR = 15 dB; (b) restoration using MLA-SDR (phase
MSE = 0.1096, time = 0.126304 s); (c) restoration using MLA-SCA (phase
MSE = 0.2103, time = 0.005472 s); and (d) restoration using MLA-EVR
(phase MSE = 0.7364, time = 0.005481 s).
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2 30 35 40

Fig. 4. Image restoration using MLA, PGA, and sharpness-maximization
method: (a) Focused image with SNR = 10 dB; (b) corrupted image using
an i.i.d. phase error function and SNR = 10 dB; (c) MLA restoration for
SNR = 10 dB (phase MSE = 0.0148); (d) MLA restoration for SNR = 5 dB
(phase MSE = 0.1728); (e) PGA restoration for SNR = 10 dB; (f) PGA
restoration for SNR = 5 dB; (g) sharpness-maximization restoration for
SNR = 10 dB (phase MSE = 0.7815); and (h) sharpness-maximization
restoration for SNR = 5 dB (phase MSE = 0.9346).

However, the SAR simulator no longer uses the naive impulse
basis functions in (2) but replaces them with more realistic
functions

hi(z,y) = k(z — u;, y — v;). (77)

This has the effect of further corrupting the collected Fourier
data in the following way:

G'Im,n] = Glm,n] - K (Fy[m,n], F,[m,n])  (78)

where G’ denote the actual collected data, and K denotes the
Fourier transform of the kernel function k. The autofocus algo-
rithms are not aware of this setup and mistakenly compute L
using the model in (2).
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10 15 20 25 30 35 40

®
Fig. 5. Image restoration using MLA and FMCA: (a) Focused image with
SNR = 5 dB; (b) corrupted image using an i.i.d. phase error function and

SNR = 5 dB; (c) MLA restoration for SNR = 10 dB (phase MSE = 0.3697);
(d) MLA restoration for SNR = 5 dB (phase MSE = 0.5521); (e) FMCA
restoration for SNR = 10 dB (phase MSE = 0.6690); and (f) FMCA restora-
tion for SNR = 5 dB (phase MSE = 0.8723).

First, we adopted a rectangular kernel

1, |z| < 1land <1

0, otherwise. (79

This illustrates a model where there is a constant reflectivity
within a resolution cell instead of an impulse located at the
center of the cell. The focused images formed using the exact
and mismatched models are shown in Fig. 6(a) and (b), re-
spectively. The images restored by MLA and FMCA for the
model mismatched image are shown in Fig. 6(c) and (d), re-
spectively. The autofocus phase error was an i.i.d. function and
SNR = 5 dB.
Second, we adopted a 2-D Gaussian kernel with

k(z,y) = ei(§+%).

This illustrates a model where the sum of reflectivity within
a resolution cell also affects neighboring cells. The focused
images formed by the exact and mismatched models are shown
in Fig. 7(a) and (b), respectively. The images restored by
MLA and FMCA for the model mismatched data are shown in
Fig. 7(c) and (d), respectively. The autofocus phase error was
an i.i.d. function and SNR = 5 dB.

(80)



LIU et al.: SYNTHETIC APERTURE RADAR AUTOFOCUS BASED ON A BILINEAR MODEL

5 10 15

25 30

(d
Fig. 6. Model mismatching using rectangular kernel (SNR = 5 dB): (a) Fo-
cused image using exact model; (b) focused image using mismatched model;

(c) MLA restoration (phase MSE = 0.2973); and (d) FMCA restoration (phase
MSE = 0.8572).
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(d
Fig.7. Model mismatching using Gaussian kernel (SNR = 5 dB): (a) Focused
image using exact model; (b) focused image using mismatched model; (c) MLA

restoration (phase MSE = 0.3205); and (d) FMCA restoration (phase MSE =
0.7237).

Based on these simulations, we conclude that MLA can out-
perform FMCA even when there is model mismatching.

VII. DISCUSSION

In this paper, we considered the problem of SAR autofocus
based on a bilinear parametric model. We derived the MLA
framework and compared it with previous methods. Under
simplistic conditions, MLA coincides with the successful MCA
technique. In more realistic conditions, MLA outperforms
FMCA and is applicable to a broader class of scenarios. As a
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byproduct, we also considered efficient numerical approxima-
tions to the CMQP problem, which lies at the core of all these
algorithms.

An important direction for future research involves the re-
duction of computational complexity. Typical SAR images in-
volve a huge number of pixels and require efficient numerical
methods for their reconstruction. In practice, pseudo-inversion
of the matrix L is typically implemented via linear interpola-
tions and FFTs. Similar ideas should be applied to the autofocus
problem and the CMQP approximations for successful applica-
tion to large images.

An additional direction for future work concerns the validity
of the linear reflectivity function model. A more realistic formu-
lation might model the amplitudes and the phases of this func-
tion separately as done in [22].
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